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Nous pouvons alors écrire d'une manière effective, pour z

intérieur à T2,

m= 0 A — r
1—71=0

les (I)m(2) étant précisément les fonctions rationnelles (3), et

comme la série du second membre représente une fonction
holomorphe par rapport aux deux variables % et A respectivement
dans r2 et C', il résulte que le point £ est effectivement un pôle pour
la fonction définie par la série (4').

Ce procédé s'applique évidemment aussi dans le cas où il y
aurait encore d'autres zéros i en nombre fini sur le cercle I\,
quels que soient leurs ordres de multiplicité. Il faut bien entendu

supposer que les zéros i n'annulent pas une infinité de

polynômes Pniz).

Indiquons maintenant les cas simples où le rayon R existe
et est bien déterminé. Nous supposerons bien entendu que les
cercles Ti introduits dans le paragraphe précédent, appartiennent
entièrement au domaine d'existence D relatif aux fonctions (5)
et (10).

Ier cas. — Les polynômes Pm(z) tendent uniformément vers

un polynôme P (z) ou vers une fonction entière de genre zéro. Dans
ce cas, les racines de la fonction P(z) apparaissent comme des

points singuliers essentiels pour la fonction représentée par la
série (4'), qui est méromorphe dans le cercle T, de centre 02, passant
par le plus proche de Vorigine zéro de P(z). Nous ne pouvons
établir avec la méthode de prolongement analytique introduite,
le caractère effectif de la série (4') à l'extérieur de T.

Dans toutes ces considérations, il faut tenir compte évidemment

de la fonction limite Q (z) relative à la suite des maxima
Qm (z). Nous reviendrons dans un autre article pour préciser la
nature de cette fonction.
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//me cas. — Les polynômes Pm(z), multipliés par des fonctions
exponentielles analogues à celles de Weierstrass-Picard, tendent

uniformément vers une fonction uniforme P (z) qui peut admettre
des points singuliers essentiels à distance finie.

Ce cas nous a conduits à une généralisation des produits
infinis de Weierstrass ou de M. Picard, qui s'introduit d'une
manière naturelle dans notre étude. La limite (13) n'ayant plus
de sens dans notre cas, il a fallu multiplier les deux membres de la
relation récurrente (2') par une fonction exponentielle convenable,

ce qui nous a conduits à d'autres séries (5) et (10), mais qui
définissent aussi des fonctions holomorphes sur D si les anciennes

possèdent cette propriété. Nous avons ensuite suivi la même voie

que dans les paragraphes précédents obtenant pour R une expression

limite analogue à (13), bien déterminée dans la plupart des

cas. Les mêmes conclusions peuvent être tirées comme dans le

cas précédent.
Avant de terminer, remarquons que le prolongement analytique

introduit n'est applicable que si l'expression limite (13),

ou son analogue du deuxième cas, conserve un sens pour z

intérieur aux cercles If. Il résulte de là que tout zéro de la
fonction P(jz) ainsi que tout point singulier des fonctions P(«)
et Q (z) arrêtent le prolongement, ces points apparaissant comme
des points singuliers essentiels pour la fonction représentée par
la série (4').

Nous reviendrons dans un mémoire plus détaillé sur toutes les

questions laissées de côté ou seulement mentionnées, mémoire
dans lequel nous essaierons de nous affranchir complètement du
caractère local de cette étude, la méromorphie de la fonction
représentée par la série (4') n'étant établie que dans des domaines

particuliers, les cercles f., rattachés à l'origine du plan z.

Juillet 1931.
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