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Nous pouvons alors écrire d’une maniére effective, pour z
intérieur a I'y,

les @, (z) étant précisément les fonctions rationnelles (3), et
comme la série du second membre représente une fonction
holomorphe par rapport aux deux variables z et A respectivement
dans I'; et C', tl résulte que le point € est effectivement un pdle pour
la fonction définie par la série (4’).

Ce procédé s’applique évidemment aussi dans le cas ou 1l y
aurait encore d’autres zéros &, ; en nombre fini sur le cercle I';,
quels que soient leurs ordres de multiplicité. 11 faut bien entendu
supposer que les zéros £, ; n’annulent pas une infinité de poly-
nomes P, (z).

4. — EXISTENCE DU RAYON DE CONVERGENCE R.

Indiquons maintenant les cas simples ou le rayon R existe
et est bien déterminé. Nous supposerons bien entendu que les
cercles I'; introduits dans le paragraphe précédent, appartiennent

entierement au domaine d’existence D relatif aux fonctions (5)
et (10).

Ier cas. — Les polynomes P, (z) tendent uniformément vers
un polynome P (z) ou vers une fonction eniiére de genre zéro. Dans
ce cas, les racines de la fonction P(z) apparaissent comme des
points singuliers essentiels pour la fonction représentée par la
série (4"), qui est méromorphe dans le cercle I', de centre O, passani
par le plus proche de Uorigine zéro de P(z). Nous ne pouvons
établir avec la méthode de prolongement analytique introduite,
le caractere effectif de la série (4') & 'extérieur de I'.

Dans toutes ces considérations, il faut tenir compte évidem-
ment de la fonction limite Q (z) relative a la suite des maxima

Q. (z). Nous reviendrons dans un autre article pour préciser la
nature de cette fonction.
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II™e cas. — Les polynomes P (z), multipliés par des fonctions
exponentielles analogues a celles de Weierstrass-Picard, tendent
uniformément vers une fonction uniforme P (z) qui peul admettre
des points singuliers essentiels a distance finie.

Ce cas nous a conduits a une généralisation des produits
infinis de WEIERSTRASS ou de M. Picarp, qui s’introduit d’une
maniére naturelle dans notre étude. La limite (13) n’ayant plus
de sens dans notre cas, il a fallu multiplier les deux membres de la
relation récurrente (2’) par une fonction exponentielle conve-
nable, ce qui nous a conduits a d’autres séries (5) et (10), mais qui
définissent aussi des fonctions holomorphes sur D si les anciennes
possedent cette propriété. Nous avons ensuite suivi la méme voie
que dans les paragraphes précédents obtenant pour R une expres-
sion limite analogue & (13), bien déterminée dans la plupart des
cas. Les mémes conclusions peuvent étre tirées comme dans le
cas précédent.

Avant de terminer, remarquons que le prolongement analy-
tique introduit n’est applicable que si I’expression limite (13),
ou son analogue du deuxiéme cas, conserve un sens pour 3
intérieur aux cercles I',. Tl résulte de la que tout zéro de la
fonction P(z) ainsi que tout point singulier des fonctions P(z)
et Q (z) arrétent le prolongement, ces points apparaissant comme
des points singuliers essentiels pour la fonction représentée par
la série (4').

Nous reviendrons dans un mémoire plus détaillé sur toutes les
questions laissées de coté ou seulement mentionnées, mémoire
dans lequel nous essaierons de nous affranchir complétement du
caractére local de cette étude, la méromorphie de lafonction
représentée par la série (4') n’étant établie que dans des domaines
particuliers, les cercles I';, rattachés & 'origine du plan z.
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