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SUR CERTAINES SERIES DE FONCTIONS
RATIONNELLES

PAR

Radu Bapesco (Cluj, Roumanie).

L’étude des séries de polynomes ou de fonctions rationnelles
présente une trés grande importance en ce qul concerne ses
applications, car on rencontre ces séries dans beaucoup de
problémes d’Analyse ou de Physique mathématique. C’est une
étude qui a un caractére d’une grande généralité, les fonctions
rationnelles données pouvant appartenir & des classes dont les
propriétés sont extrémement différentes. Ainsi, nous pouvons
mentionner les séries de fonctions itératives envisagées par
M. Juria, ou de fonctions rationnelles qui satisfont a certaines
relations récurrentes, etc. Ces derniéres ont été étudiées dans un
cas particulier par H. PoiNcARE !, ses recherches présentant un
trés grand intérét du point de vue local auquel il se place.

Dans ce mémoire, nous considérerons une classe simple de
séries de fonctions rationnelles généralisant celles de PoIiNcARE?2,
et nous déterminerons le caractére méromorphe dans certains
domaines des fonctions qu’elles représentent. l.a méthode em-
ployée est une extension convenablement modifiée, de celle
utilisée par nous dans ’étude de certaines séries particuliéres 3,
méthode qui présente un caractére trés général car elle peut étre
appliquée aussi dans d’autres cas, sur lesquels nous reviendrons
dans un autre article. |

Soit ¥ (z) une fonction représentée par la série

«©

N, 6 )

m=0

1 American Journal of Matematics, t. VII.
2 M. N. ABraMEsco a déja étudié des séries de polynomes vérifiant une relation
récurrente plus générale (polynomes de FABER) qui rentre dans la classe (2). Voir
Bollettino dell’ Unione matematica italiana. Anno IV, 1925.

3 Bull. de la Soc. des Sciences, Cluj, Roumanie, t. V, 1r¢ partie, p. 13.
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les C,, étant des constantes données et O (z), (m = 0, 1, ...),
une suite de fonctions de la variable complexe z, qui vérifient le
systéme récurrent infini

P (@) 00, (3) = S Q@) By (e) + Ry la) @)

ou P, (z), Q. .(z) et R, (z) sont des polynomes connus de z.
I1 est facile & voir que toutes les fonctions @) (z) sont ration-
nelles. En effet, supposant que z est distinet de tous les zéros des
polynomes P, (z), nous pourrons calculer de proche en proche
toutes les fonctions @, (z), dont les expressions seront données par
la relation !

Nous voyons bien que @ (z) apparait comme un quotient de
polynomes. La série (1) est donc une série de fonctions rationnelles
qui, dans Uhypothése faite, est définie formellement d’une maniére
univoque & partir des polynomes donnés. C’est des séries de cette
forme que nous nous occuperons dans notre article.

1. — REMARQUES PRELIMINAIRES.

Considérons la série un peu plus générale

42(%>mcm«bfn(z) , e

)

m=0

ou A est un parameétre complexe et p un nombre réel positif. Si

1 Obtenue én résolvant par la régle de Crémer le systéme d’équation's linéaires déduit
des (m + 1) premiéres relations de (2).

Qp, 1(2) Qpy, o (2) Qp, m (2) R, (2)

. — P (@ Quy (8 o Qg g (@ Ry (3) |

o(2) P1(23) ... Pm(2) v = Prg(e) o Qg mals) Ryl |
Y b — Py (2) R, (2)

(3)
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nous désignons par p, le rayon de convergence dans le plan ) de
la série

e o]
ym
2 X C,m ,
m=0

le rayon R, correspondant a (4) sera évidemment donné par la
relation R, = p,. R, ol R est le rayon de convergence de la série
particuliere *

>(2) e (&)

Nous pouvons donc, sans restreindre la généralité de notre
étude, considérer seulement la série (4') pour laquelle toutes les
constantes G, sont égales a I’'unité.

Nous sommes obligés d’introduire dés le début une condition
nécessaire dans notre recherche: la série

S(2) k0 5)

doit converger uniformément en A sur un certain cercle C, dont
le centre est a I’origine O, , ceci quel que soit z appartenant & un
domaine simplement connexe D qui contient ’origine O,. Cette
série représente donc une fonction holomorphe de la variable 4
sur tout le cercle fermé C. Prenons p égal au rayon de ce cercle.
Il est évident que dans ces conditions, la série () admet un
cercle de convergence C; dont le rayon est plus grand que s.

Posons maintenant ®, (z) = ¢™. ®,,(z); nous déduisons de (2)
que les nouvelles fonctions @, (z) satisfont au systéme récurrent

m Q . R
P (5 b (2) = E—m—’ﬁ(bm_n (z) + m 2 Com=0,1,..) (2)

n m
~
1 ]
n=1 { ¢

De cette maniére, nous rattachons le rayon de convergence
de notre série (4') & celui de la série connue (5), ce qui d’ailleurs
est inhérent au probléme.
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2. — DETERMINATION DU RAYON DE CONVERGENCE R.

Pour déterminer le rayon de convergence R de la série (4'),
remarquons que, si I’on peut former une suite réelle de fonctions
positives !

Do(z), Dz, s Do (2) . (6)

vérifiant sur tout le domaine fermé D, les inégalités
0, (2) = | ®,(2) | (m=0), la série auxiliaire

WD, (2) (7)

m=0

admettra dans le plan 4 un cercle de convergence de rayon plus
petit, au plus égal & celui qui correspond & la série (4'). |

Sotent P, (z), Q,, .(2) et R, (), trois suites réelles et positives
de polynomes ou de fonctions dépendant de z, qui vérifient sur
D les inégalités

Qun(d =1Qy (2| Bl =R, (] . (8)

0 < P la) <[P,

En les remplacant dans la relation récurrente (2'), ce qui
correspond 2 & une majoration des modules des polynomes
donnés du second membre et & une minoration dans le premier
membre, il est clair que les fonctions @, (z) qui satisfont & la
relation récurrente ainsi obtenue, rentreront dans la catégorie (6)
considérée plus haut.

Prenons en particulier

)'m(z> = R{(z) . Qm,n(z) = Q. {3 . (9)

1 En désignant ces fonctions avec &, (z), nous mettons seulement en évidence leur
dépendance du point z, mais il importe de savoir qu’elles sont réelles et positives.
2 Sur I’axe réel positif.
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R (z) étant le maximum sur le cercle C du module de la fonction

représentée par la série (5), pour z appartenant a D, et Q,,_,(z) des
polynomes ou des fonctions qui dépendent seulement de la
différence (m — n). Pour le premier groupe R, (z), les inégalités
correspondantes (9) sont précisément celles de Cauchy que I'on
déduit de I’holomorphie de (5) sur le cercle C. Quant aux fonctions

Q,, »(2), leur choix dépend de la convergence uniforme des
séries

2 (%) Q. g @) (p=0,1,..) (10)’

sur tout le cercle fermé C et pour z appartenant & D. Si cette
condition est remplie quel que soit p, nous remplacerons les
Q,, »(2) respectivement par les maxima Q,, , (z) sur C des fonc-
tions représentées par les séries (10) correspondant aux mémes
valeurs m — n de p.

Passons maintenant aux polynomes P, (z), que nous suppose-
rons étre de la forme!

c’est-a-dire ne s’annulant pas a l’origine 2. Ils pourront &tre
remplacés par les expressions suivantes

I_)m(z):(l——JZl )(1_IK|ZII)"'(1_I‘CIZ’ ) (117)

\ [“-m,i | *m, 2 >m,h|

pourvu que les inégalités (8) soient remplies. Ceci ne sera possible
que si z est intérieur au cercle I'; dont le centre est & Iorigine O,
et dont le rayon est égal au module du plus proche de O, zéro

1 k dépend en général aussi de n.
2 Si un nombre fini p de zéros des polynomes P,, (2) coincide avec O, multipliant la

série (4) par P et effectuant sur les ¢,,(2) quelques transformations analogues a celles

employc€es au § 4°, nous obtenons un systeme récurrent du type (2’) pour lequel aucun
des polynomes P,,(z) ne s’annule & I’origine.
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de tous les polynomes Pm(z) car, dans cette hypothése, nous
avons quel que soit m et

0<1____ Vlz['[éli_yz '
*m, 1 |

-

m, 1

La relation de récurrence (2') devient aprés toutes ces modi-
fications

d’ou, remplagant m par m —1, divisant la relation obtenue par
p et la soustrayant de la premiére, nous déduisons

‘GEm (2) 6m (2) = [Em~1 (3) + Qg (Z)] Dy (2)

En résolvant de proche en proche cette relation récurrente
particuliére, nous obtenons la série auxiliaire (7) sous la forme

A . Q; (2)
Ria (1) p a1l [l 3, <z)] ’ 1)

1 i=0

son rayon de convergence R étant donné par la limite

R = lim¢ ; P12 Q-1 (TZ_)_ f (13)
M o P (3 P (2) \

que nous supposerons pour le moment bien déterminée et diffé-
rente de zéro. Dans cette hypothése, z étant supposé intérieur au
cercle I'|, il .résulte que la série de fonctions rationnelles (4)
converge absolument et uniformément & l'intérieur de tout
cercle concentrique au cercle C’

|%] = R

mais de rayon plus petit. Elle représente donc une fonction holo-
morphe de la variable } dans C'.
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La convergence uniforme de la série (4) dans G’ entraine
I’holomorphie de la fonction qu’elle représente, aussi par rapport
a z & D'intérieur du cercle I';, résultat qu'on établit & I'aide du
théoréme classique de Weierstrass qui se réfere aux séries de
fonctions holomorphes. Il résulte donc que la série (4') représente
une fonction holomorphe par rapport d I'ensemble des deux variables
z et A respectivement a U'intérieur des cercles 'y et C'.

3. — PROLONGEMENT ANALYTIQUE DANS LE PLAN Z.

La méthode utilisée pour établir le caractére effectif de la
série (4') & intérieur du cercle I'; peut étre employée, apres une
simple transformation du systeme récurrent (2'), aussi au
prolongement analytique dans le plan z de I’élément de fonction
qu’on obtient en développant cette série suivant les puissances
entieres et positives de z. En effet, supposons que de tout
I’ensemble des zéros des polynomes P, (z) il n’y ait qu'un seul
situé sur le cercle I';, le point &, qui annule seulement le polynome
P, (z). Nous supposerons de plus que c’est un zéro de degré un
de multiplicité.

Ceci précisé, remarquons qu’'en multipliant la série (4’) par

(1 ——é) et effectuant les réductions, le point £ n’annulera plus

<

les dénominateurs des expressions qui correspondent aux divers
coefficients des puissances de A ainsi modifiés. Formellement, le
point £ n’apparait plus comme un pdle de la fonction représentée
par la série (4') multipliée par le facteur considéré. Nous allons

montrer que ceci a lieu aussi d’'une maniere effective. Pour cela,
posons

‘D:n(z) == (‘J — ?) D, (2) m=p,p+1,.)

et désignons par P} (z) le polynome P, (z) dans’expression duquel

on aurait supprimé le facteur (1 — ?) Le systéme récurrent (2')

L’Enseignement mathém., 30¢ année; 1931. 17
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pourra alors s’écrire

m
TP (D) By (2) = Qo (@) By () < Ry (g
n=1

m=20,1, ... p — 1)

D
Pp p; (z) (1); (z) — 2 Pp—'ﬂ Qp,- - (z) q’p—n (z) — P‘p (Z) (2//}
n=1
o Pm< ) P? (z) = 2 g7 <1 —_ i)me n(z) b (2)
n=m-p—1
m—p
2 TQ pla) DL (2) + R (3) ( 1— -z—> (m > p)
n=0 .

et nous voyons qu’il rentre dans le méme type (2), les racines des
polynomes P, (z) correspondants étant situées a l'extérieur du
cercle I'; . Soit I', le cercle concentrique a I'; qui passe par le
zéro de la suite

le plus proche de I’origine. Pour z intérieur a ce cercle, la série

o1 x
2 D, (z) - 2 DL (2) (14)
n=>0 m=p

converge uniformément dans le méme cercle C’, car la limite (13)

ne dépend pas de P; (z), et le maximum sur D du facteur (1 —%)

\

est égal & I'unité. Le cercle de convergence de cette série et, par
conséquent, aussi le cercle C’, ne changent pas si ’on remplace
dans (14) les 9, (z), (n =0, 1, ... p—1), par d’autres fonctions
@’ (z) vérifiant les relations

0,1, ...p — 1) .

e»—
w
Il
VRS
s
I
| w
N———"
<
S
=
s
I
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Nous pouvons alors écrire d’une maniére effective, pour z
intérieur a I'y,

les @, (z) étant précisément les fonctions rationnelles (3), et
comme la série du second membre représente une fonction
holomorphe par rapport aux deux variables z et A respectivement
dans I'; et C', tl résulte que le point € est effectivement un pdle pour
la fonction définie par la série (4’).

Ce procédé s’applique évidemment aussi dans le cas ou 1l y
aurait encore d’autres zéros &, ; en nombre fini sur le cercle I';,
quels que soient leurs ordres de multiplicité. 11 faut bien entendu
supposer que les zéros £, ; n’annulent pas une infinité de poly-
nomes P, (z).

4. — EXISTENCE DU RAYON DE CONVERGENCE R.

Indiquons maintenant les cas simples ou le rayon R existe
et est bien déterminé. Nous supposerons bien entendu que les
cercles I'; introduits dans le paragraphe précédent, appartiennent

entierement au domaine d’existence D relatif aux fonctions (5)
et (10).

Ier cas. — Les polynomes P, (z) tendent uniformément vers
un polynome P (z) ou vers une fonction eniiére de genre zéro. Dans
ce cas, les racines de la fonction P(z) apparaissent comme des
points singuliers essentiels pour la fonction représentée par la
série (4"), qui est méromorphe dans le cercle I', de centre O, passani
par le plus proche de Uorigine zéro de P(z). Nous ne pouvons
établir avec la méthode de prolongement analytique introduite,
le caractere effectif de la série (4') & 'extérieur de I'.

Dans toutes ces considérations, il faut tenir compte évidem-
ment de la fonction limite Q (z) relative a la suite des maxima

Q. (z). Nous reviendrons dans un autre article pour préciser la
nature de cette fonction.
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II™e cas. — Les polynomes P (z), multipliés par des fonctions
exponentielles analogues a celles de Weierstrass-Picard, tendent
uniformément vers une fonction uniforme P (z) qui peul admettre
des points singuliers essentiels a distance finie.

Ce cas nous a conduits a une généralisation des produits
infinis de WEIERSTRASS ou de M. Picarp, qui s’introduit d’une
maniére naturelle dans notre étude. La limite (13) n’ayant plus
de sens dans notre cas, il a fallu multiplier les deux membres de la
relation récurrente (2’) par une fonction exponentielle conve-
nable, ce qui nous a conduits a d’autres séries (5) et (10), mais qui
définissent aussi des fonctions holomorphes sur D si les anciennes
possedent cette propriété. Nous avons ensuite suivi la méme voie
que dans les paragraphes précédents obtenant pour R une expres-
sion limite analogue & (13), bien déterminée dans la plupart des
cas. Les mémes conclusions peuvent étre tirées comme dans le
cas précédent.

Avant de terminer, remarquons que le prolongement analy-
tique introduit n’est applicable que si I’expression limite (13),
ou son analogue du deuxiéme cas, conserve un sens pour 3
intérieur aux cercles I',. Tl résulte de la que tout zéro de la
fonction P(z) ainsi que tout point singulier des fonctions P(z)
et Q (z) arrétent le prolongement, ces points apparaissant comme
des points singuliers essentiels pour la fonction représentée par
la série (4').

Nous reviendrons dans un mémoire plus détaillé sur toutes les
questions laissées de coté ou seulement mentionnées, mémoire
dans lequel nous essaierons de nous affranchir complétement du
caractére local de cette étude, la méromorphie de lafonction
représentée par la série (4') n’étant établie que dans des domaines
particuliers, les cercles I';, rattachés & 'origine du plan z.

1

Juillet 1931.
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