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INTRODUCTION A LA THEORIE DES CONGRUENCES
AU MOYEN DE LA THEORIE DES GROUPES

PAR

M. G.-A. MirLer (Urbana, Ill.) 1.

Les nombres 0, 1, 2, ..., m — 1 sont dits constituer un systéme
résiduel complet, relativement au module m, ot m est un entier
positif quelconque.

Ces nombres constituent un groupe cyclique G par rapport a
Paddition, mod. m, groupe dont la transformation identique est
représentée par zéro et dont 'ordre est m. Si n est un élément
quelconque de G et si d est le plus grand facteur commun & m
et n, alors n engendre un groupe d’ordre m:d. En particulier,
G a autant d’éléments générateurs qu’il y a de nombres, dans le
systéme résiduel, qui sont premiers avec m. Une condition
nécessaire et suffisante pour que m soit premier est que chaque
nombre du systeme, excepté zéro, puisse jouer le role d’élément
géneérateur.

Le «totient » ®(m) de m ou indicateur de m est le nombre de
générateurs de G ou le nombre d’opérateurs, d’ordre m, en G.
Si d est un diviseur entier quelconque de m, alors G contient un
et seulement un sous-groupe d’ordre d et si d,, d, ..., d,, repré-
sentent tous les diviseurs entiers positifs de m, y compris m,

alors ]
®(dy) + O(dy) + ... + D(d,) = m

puisque le nombre des opérateurs, de ’ordre le plus élevé, dans
tous les sous-groupes cycliques d’un groupe quelconque est égal

1 Traduit de I’anglais par A. BUHL.
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a Pordre de ce groupe. Soient d, et d, deux diviseurs entiers

positifs de m tels que m = d; d,, alors

A

o(m) = @(dy) (dy) ||

rA=1

P:
p;—1

oU py, P2, ---y Py, sont les facteurs premiers communs distincts et
positifs de d, et d,. En particulier, quand d, et d, sont premiers

entre eux, _
B (m) = D (d,) ©(dy) -

Ceci résulte directement du fait que G est alors le produit
de ses sous-groupes cycliques, d’ordres d,, d, respectivement,
et que '
¢ (p*) = p* — p*~
~quand p est premier. '

Les nombres d’un systéme résiduel complet qui sont premiers
avec m sont dits constituer un systéme résiduel réduit, mod. m.
Un systeme résiduel réduit constitue un groupe abélien par
rapport & la multiplication, mod. m, et ce groupe 0 est le groupe
des isomorphismes de G, puisque ses éléments représentent les
différents indices des puissances auxquelles les éléments de G
peuvent correspondre dans un automorphisme de G. Quand tous
les éléments de G sont multipliés par un élément de 0, il en résulte
un automorphisme de G.en vertu duquel ces produits, mod. m,
représentent une permutation des éléments de G. En particulier,
quand les éléments d’un systéme résiduel complet sont multipliés
par un nombre qui est premier avec le module et que les produits
sont réduits par rapport & ce module, il en résulte, & nouveau, ce
systéme résiduel complet. Les résidus des nombres naturels,
combinés par multiplication, ont été considérés comme le plus
important exemple d’un groupe abélien d’ordre fini 2.

Si le groupe G est prolongé par le groupe @, il en résulte un
groupe dont 1’ordre est le produit des ordres de G et #. Ce groupe
est ’holomorphe de G. Il est non abélien quand m > 2. Quand m
est impair, il ne contient point d’élément invariant sauf 1’élément
identique et, quand m est pair, son seul élément invariant, hors

1 H. WEBER, Lehrbuch der Algebra, vol. 2, seconde édition, 1899, p. 60.
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’élément identique, est 1’élément d’ordre 2 contenu dans G.
Si nous représentons chacun des nombres d’un systéme résiduel
complet par une lettre différente, ’holomorphe de G apparait
comme un groupe de substitution transitif concernant ces m
lettres. Il est clair que, dans un automorphisme de G, les auto-
morphismes des sous-groupes maxima dont les ordres sont des
puissances de nombres premiers sont indépendants l'un de
autre; il suit de 1& que @ est le produit direct des groupes d’iso-
morphismes des sous-groupes de G dont les ordres sont des
puissances de nombres premiers.

Tout opérateur d’un groupe fini engendre un sous-groupe
cyclique de ce groupe. En particulier, chaque nombre du groupe
6 engendre un sous-groupe cyclique. Puisque I'ordre d’un groupe
est divisible par I'ordre de chacun de ses sous-groupes, on a,
lorsque @ est premier avec m

olm) — mod. m .

a

On voit ainsi que le théoréeme de Fermat est un cas trés parti-
culier du théoréeme bien connu de Lagrange relatif a 'ordre de
chaque sous-groupe d’un groupe. La démonstration de ce théo-
réeme étant ainsi rendue trés élémentaire, la question peut étre
élargie, on le voit, quand 1l est nécessaire de retenir le théoreme
de Fermat comme théoreme séparé se rapportant cependant aux
éléments de la Théorie des groupes considérés d’un point de vue
élevé. Sous tout rapport, 1l semble indésirable de démontrer le
théoreme de Fermat dans la Théorie des Nombres sans se soucier
de le comprendre en quelque aspect élémentaire de la Théorie des
Groupes. Des remarques similaires s’appliquent a nombre
d’autres théoremes fondamentaux de la Théorie élémentaire des
Nombres et conduisent a conclure que c¢’est d’abord la Théorie des
Groupes qui doit intervenir, dans les exposés mathématiques
primordiaux, a cause de sa tres grande généralité.

L’inverse d’un opérateur, de G, représenté par la lettre r dans
le systeme résiduel complet, mod. m, est m — r. En fait, si tous
les éléments de G sont multipliés par m — 1, il en résulte un
automorphisme de G dans lequel chaque opérateur correspond &
son inverse. S1 r est premier avec m, il en est de méme de m — r
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et la somme de tous les nombres représentés, en I, comme ci-
dessus est

%m D (m) .

Si un opérateur de I est représenté par le nombre n,, son
inverse est représenté par le nombre n, si n; ny, = 1, mod. m.

Tout opérateur de I peut correspondre & son inverse dans un
automorphisme de I mais non dans un automorphisme de
I’holomorphe de G quand I concerne des opérateurs dont I’ordre
excede 2. Le sous-groupe G est invariant dans cet holomorphe
mais le sous-groupe I n’est jamais invariant & moins que I ne
soit I'identité. Une condition nécessaire et suffisante pour que cet
holomorphe contienne un second sous-groupe cyclique invariant
d’ordre m. est que m soit divisible par 8. Quand cette condition
“est satisfaite I’holomorphe de G est aussi ’holomorphe de ce
second sous-groupe cyclique invariant d’ordre m puisque tout
sous-groupe cyclique invariant d’un groupe transitif est-composé
de substitutions réguliéres et de 'identité. De 14 suit ce théoreme:

Une condition nécessaire et suffisante pour qu’un groupe cyclique
d’ordre m soit un sous-groupe caractéristique de son holomorphe
est que m ne soit pas divisible par 8. S1 m est divisible par 8, le
groupe cyclique d’ordre m posséde un double holomorphe.

De méme que le symbole ®(m) est employé pour représenter
le nombre d’opérateurs, de ’ordre le plus élevé, dans le groupe
cyclique d’ordre m, le symbole P, (m) a été employé pour repré-
senter le nombre d’opérateurs, de I’ordre le plus élevé, dans le
produit direct de n groupes cycliques d’ordre m. Si p ' est la plus
haute puissance de p qui divise m, ce produit direct contient le
“produit direct de n groupes cycliques d’ordre p*. Le nombre
d’opérateurs de ’ordre le plus élevé, en ce produit direct, est
évidemment

pr* —p"eh .

D’ou il suit que le nombre d’opérateurs, de I’ordre le plus

élevé, dans le produit direct de n groupes cycliques d’ordre m est

q»n(m)'r_nl"(1;%)<1—‘%> (1__"'_;>
S S SWAN Py/ P
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si py, Pa -, Py sont les facteurs premiers distincts de m. Par
conséquent, cette formule représente aussi le nombre de séries
ordonnées de n entiers d’un systéme résiduel complet, mod. m,
de telle sorte que m soit premier avec le plus grand commun
diviseur de chaque série.

Si nous considérons le double module p, ®(y) ou p est un
nombre premier et ¢ (y) un symbole polynominal, irréductible
mod. p, de degré n, il est évident que les p" polynomiaux qui
forment un systéme résiduel complet, mod. p, ®(x), constituent,
par rapport a 'addition, le groupe abélien d’ordre p™ et du type
(1, 1, 1, ...). En excluant zéro de ce systeme résiduel complet,
nous obtenons un systéme résiduel réduit mod. p, ®(x) et ceci
constitue un groupe quand les éléments sont combinés par
multiplication. Le dernier groupe est cyclique car si I'un de
ses polynomiaux vérifie ¥ = 1, mod. p, mais nulle équation de
plus faible degré et de méme forme, il ne peut pas y avoir plus
de d polynomiaux distincts, en ce systéme résiduel réduit, qui
satisfont a cette équation. De la, on conclut que le groupe formé
par ce systeme résiduel réduit a la propriété de ne pas contenir
plus d’un sous-groupe cyclique d’un ordre donné quelconque qui
soit un diviseur de p™ —- 1 ; par suite, il doit étre cyclique.

Si nous multiplions tous les éléments du systéme résiduel
complet donné par un élément de ce systeme, 1l résulte une (1, 1)
correspondance entre les éléments du systéeme résiduel complet
original. Cecl représente un automorphisme quand les éléments
sont combinés par addition, mod. p. D’ou il suit que les éléments
du groupe formé par ce systeme résiduel réduit peuvent étre
regardés comme les opérateurs qui transformeérent en lui-méme le
groupe formé par les éléments du systéme résiduel complet. Ces
deux groupes engendrent, de plus, un groupe d’ordre p" (p"™ — 1)
qul est toujours inclus en I’holomorphe du groupe formé par le
systeme résiduel complet. Une condition nécessaire et suffisante
pour qu’il coincide avec cet holomorphe est n = 1, puisque le
groupe des 1somorphismes d’un groupe abélien non cyclique est
toujours non abélien. Ceci met en lumiére le fait que le groupe
des 1somorphismes du groupe abélien d’ordre p™ et du type
(1, 1, 1, ...) implique toujours un opérateur d’ordre p" — 1 et
constitue, a ce sujet, une démonstration trés élémentaire.




/

12 G. A. MILLER

‘Le rang du groupe abélien formé par un systéme résiduel réduit,
mod. m, est évidemment égal au nombre des générateurs indépen-
dants de son sous-groupe maximum dont 'ordre est une puis- -
sance de 2. Une condition nécessaire et suffisante pour que m
ait des racines primitives est, par suite, que ce groupe abélien
ne concerne qu’un opérateur d’ordre 2. D’autre part le produit
prolongé de tous les opérateurs d’un groupe abélien est d’ordre 2,
ou revient a 'identité, suivant que ce groupe contient seulement -
un opérateur d’ordre 2 ou plus d’un tel opérateur. Puisqu’un
nombre premier a des racines primitives, il résulte de ce théoréme
que (p — 1) ! ==—1, mod. p, 'opérateur d’ordre 2 dans le systéme
résiduel redult, mod. p, étant clairement p — 1. Le théoréme de
Wilson peut alors étre regardé comme un cas particulier du
théoréme relatif a ’ordre du produit prolongé de tous les opéra-
teurs d’un groupe abélien quelconqgue.

Le groupe des isomorphismes d’un groupe abélien quelconque
est évidemment le produit direct des groupes d’isomorphismes
de ses plus grands sous-groupes de puissance premiére. Puisque
chacun de ces derniers est d’ordre pair quand il n’est pas I'iden-
tité, il résulte que m ne peut pas avoir de racines primitives
a moins qu’il ne soit puissance d’un nombre premier ou le double
d’une puissance d’un nombre premier impair. Il est aisé de voir
que lorsque m est de la forme 2*, « > 2, il ne peut pas avoir de
racine primitive puisque les trois nombres 2* —1, 2" & 1,
de son systéme résiduel réduit représentent clairement des
operateurs distincts d’ordre 2.

Le fait que tout nombre impair p a des racines primitives
résulte directement du théoréme que la congruence 2" =1,
mod. p, ne peut pas avoir plus de n racines distinctes en un
systéme résiduel réduit, mod. p, puisque ce systeme résiduel
réduit doit alors constituer un groupe cyclique.

Pour prouver que p™, lorsque p est un nombre premier impair
quelconque et m un entier positif quelconque, a des racines
primitives, il est, maintenant, seulement nécessaire de montrer
‘que, pourvu que m > 1, il doit y avoir des nombres dans le
Systéme-résiduel réduit,'mod. p™, qui représentent des opéra-
teurs d’ordre p™ |

Il est aisé de voir que 1 + p est un tel nombre puisque sa
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puissance p est de la forme 1 -+ kp?, ou k est premier avec p.
Donc le nombre 1 -+ p correspond a un automorphisme du
groupe cyvclique d’ordre p™, enlequel seulement p opérateurs cor-
respondent & eux-mémes cependant qu’exactement p? opérateurs
correspondent a eux-mémes dans la puissance p de cet auto-
morphisme. De ceci suit directement que p”, « < m, corres-
pondent & eux-mémes dans la puissance p*' de cet automorphisme
d’ou 1l résulte encore que le systéme résiduel réduit, mod. p™,
p étant premier impair, représente un groupe cyclique par
rapport & la multiplication. Puisque le groupe des isomorphismes
du groupe d’ordre 2 est 'identité, il résulte que le systéme rési-
duel réduit, mod. p, représente le meme groupe que le systéme
résiduel réduit, mod. 2p™, si toutefois p est premier impair.

On peut donc noter que une condition nécessaire et suffisante
pour qu’'un nombre m > 2 posséde des racines primitives est
qu’tl y ait seulement un sous-groupe de chaque ordre premier dans
le systeme résiduel réduit de m, et, de ceci, on conclut que les seuls
tels nombres qui ont des racines primitives sont 2, 4, p™ et 2p™,
sl p est premier impair.

Le théoreme mis en italique suggére une nouvelle méthode
pour établir, comme suit, I'existence de racines primitives:
Un nombre d’un systeme résiduel réduit, mod. p™, ne peut
évidemment pas correspondre & un opérateur d’ordre p*, a moins
qu’il ne soit de la forme 1 4 kp, puisqu’autrement il représen-
terait un automorphisme qui ne laisserait pas invariant un
opérateur d’ordre p dans le systeme résiduel complet. Donc un
nombre de ce systéme résiduel réduit ne peut pas correspondre
aun opérateur d’ordre p, a moins qu’il ne soit de la forme 1-+kp™ .
Ceci prouve qu’il y a seulement p — 1 tels nombres dans le
systeme résiduel réduit, mod. p™.

Une série d’opérateurs d’un groupe G est dite * série compléte
pour les puissances n si les puissances n de ces opérateurs donnent
toutes les puissances n différentes des opérateurs de G et s’il
n’y a pas deux opérateurs de la série ayant la méme puissance x.
Les produits obtenus en multipliant tous les opérateurs d’une
série compleéte, pour les puissances n d’un groupe abélien H,
par un opérateur quelconque de ce groupe, constituent une

L G. A. MILLER, Bulletin of the Amer. Math. Sociely, vol. 18,1912, p. 227.
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série complete pour puissances n puisque les puissances n des

opérateurs de H constituent un groupe. Les k séries complétes
obtenues en multipliant une telle série compléte quelconque,
par les différents opérateurs de H dont les ordres divisent n
ont été appelées séries complémentaires. Ces k séries complémen-

taires impliquent chaque opérateur de H une fois et une fois .

seulement. L’ordre du produit prolongé de tous les opérateurs
- d’une série compléte pour puissances n de H est un diviseur de 2n
puisque P’ordre du produit prolongé de tous les opérateurs d’un
groupe abélien quelconque doit diviser 2n. Une condition néces-
saire et suffisante pour que cet ordre soit 2n est que le sous-
‘groupe formé par les puissances n de H contienne une fois et
une fois seulement un opérateur d’ordre 2.. En particulier, une
condition nécessaire et suffisante pour que [(p — 1): 2] | appartienne
a Uexposant 4, mod. p, est que p — 1 soit divistble par 4; quand
p — 1 n’est pas divisible par 4, une condition nécessaire et suffisante
pour que |

<P—;1—>‘ =1, mod. p

est qu’un nombre pair des carrés de ces nombres soient négatifs par
réduction d leurs moindres valeurs absolues, mod. p, puisque

—1
1,2, ., £2

4

est évidemment une série compléte pour carrés mod. p. -

Si le produit prolongé d’une série compléte pour carrés d’un
systéme résiduel réduit, mod. m, est d’ordre 4, le produit pro-
longé de toute autre série compléte pour carrés, eu égard au méme

module, doit aussi étre d’ordre 4 et si un tel produit se réduit .

- & Pordre 2 ou & l'identité, tout autre tel produit est ou d’ordre 2
ou réduit & I'identité. En particulier, quand le systéme résiduel
réduit, mod. m, est un groupe cyclique, deux tels produits

prolongés ne.peuvent différer que par le signe puisque ’opérateur

d’ordre 2, en un tel groupe, est représenté par — 1. Au surplus,
une série compléte pour carrés, d’un tel systeme, reste une telle
série si le signe d’'un quelconque de ses éléments est changé,

et deux séries complétes pour carrés peuvent différer 'une de

- lautre seulement eu égard & de tels changements de signes. D’otr
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il résulte que si nous multiplions, tous les nombres de la série
1,2, ..., (p — 1): 2, par un nombre m premier avec p et que si
nous réduisons les produits & leurs moindres résidus absolus,
mod. p, le nombre m est un résidu quadratique ou un résidu
non quadratique de p suivant que le nombre des nombres
négatifs parmi ces produits est pair ou impair, puisque les pro-
duits prolongés de ces deux résidus complets pour carrés différent
seulement par le facteur m a la puissance (p — 1): 2. Ces consi-
dérations relatives a la Théorie des Groupes contiennent mainte-
nant une démonstration du Lemme bien connu de Gauss. Le
fait que — 1 est un résidu quadratique de tous les nombres
premiers de la forme 1 + 4k et un résidu non quadratique de tous
les autres nombres premiers impairs est donc un cas tres parti-
culier d’un théoréme de la Théorie des Groupes qui affirme que
quand ¢ est un élément d’un groupe quelconque, tel que {™ soit
d’ordre n, si p* et p?, B > 0, sont les plus hautes puissances du
nombre premier p qui divise m et n respectivement, 'ordre de ¢
est [p“*? ou [ est premier avec p.

Quand 8 = 0, lordre de ¢ peut étre divisible par une puissance
quelconque de p qui n’excede pas p”. D’ou 1l résulte que, puisque
— 1 est un opérateur d’ordre 2 dans le systéeme résiduel réduit,
mod. p, il ne peut pas étre le carré d’un opérateur de ce systeme,
a moins que cet opérateur ne soit d’ordre 4, et quand ce systeme
résiduel contient deux opérateurs d’ordre 4, 1l faut alors que — 1
soit leur carré commun. C’est dire qu’'une condition nécessaire
et suffisante pour que — 1 soit un résidu quadratique de p est
que p — 1 soit divisible par 4.

Le fait que le groupe des isomorphismes du groupe cyclique
d’ordre 2™, m > 2, est du type (m — 2, 1) et contient un opéra-
teur d’ordre 2™ * qui est commutatif avec les opérateurs d’ordre
4, en ce groupe cyclique, implique que les carrés de tous ses opé-
rateurs sont commutatifs avec les opérateurs d’ordre 8 contenus
en ce groupe cyclique et aussi que ces opérateurs carrés doivent
correspondre aux nombres du systéme résiduel réduit qui sont
de la forme 1 + 8k. De la résulte de plus que tous les nombres de
cette forme sont les résidus quadratiques, mod. 2™, cependant
que tous les autres nombres impairs sont non-résidus quadra-
tiques. Quand m = 2, ce groupe d’isomorphismes est d’ordre 2
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et de 1a.suit qu'un nombre impair est un résidu quadratique ou
un non-résidu quadratique de 4 suivant qu’il est de la forme
1 + 4k ou de la forme 3 -+ 4k.

Puisque le groupe des isomorphismes du groupe cyclique
d’ordre p™, p étant un nombre premier impair, est le groupe
cyclique d’ordre

’ pm . Pm-l )
les résidus quadratiques, en ce cas, sont les nombres, en le systeme
résiduel réduit, mod. p™, qui correspondent aux operateurs du
produit direct du groupe cyclique d’ordre p™™ par le groupe
cyclique d’ordre (p — 1): 2. En particulier, un résidu quadra-
tique quelconque, mod. p”, @ > 1, est aussi un résidu quadratique,
mod. pf, ou B est un entier positif arbitraire.

Puisque tout nombre de la forme 1 4 kp correspond & un
opérateur, en le groupe des isomorphismes dont I’ordre est une
‘puissance de p, il résulte que tout nombre de cette forme est un
résidu quadratique, mod. p™. Si un nombre est de cette forme,
son carré est de la méme forme et la plus haute puissance de p
qui divise le k de ce nombre est aussi la plus haute puissance de p
qui divise le £ de son carré, puisque tous les opérateurs d’ordre
p*, dans le groupe des isomorphismes, correspondent & un k qui
est divisible par la puissance m — o — 1 de p mais par nulle
puissance de p plus élevée.

Du fait que le groupe du systéme résiduel réduit, mod. p est
le produit direct des groupes cycliques des ordres pm 1 ef p—1
- respectivement, il résulte que si /4, [, représentent respectivement,
un résidu quadratique et un non résidu quadratique de p, alors
l, + kp, ly, + kp, k étant un entier quelconque, positif ou nul,
représentant respectivement un résidu quadratique et un non
résidu quadratique de p™

Quand [, I, prennent successivement toutes leurs valeurs
possibles de 1 & p — 1, cependant que k& prend successivement
toutes les valeurs de 1 & p™!, nous obtenons ainsi chaque
résidu quadratique et chaque résidu non quadratique, mod. p™,
une fois et une fois seulement. Ces considérations montrent
que si [ est racine primitive de p, sans ainsi étre racine primitive
de p2, alors I + kp, ou k est premier avec P est une racine
prlmltlve de p™.
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Ceci fournit une démonstration, par la Théorie des Groupes,
du théoreme suivant:

Chaque résidu quadratique et chaque non-résidu quadratique
d’une puissance positive arbitraire de p est aussi un résidu qua-
dratique ou un non résidu quadratique de toute aulre puissance
positive de p, cependant que toute racine primitive, d’'une puissance
positive de p, au moins ausst grande que p2, est ausst une racine
primitive de toute autre puissance positive de p.

Ilyap™?*®(p—1) racines primitives distinctes de p qui
sont moindres que p™, m > 1, mais ne sont pas ainsi racines
primitives de p™. Les racines primitives distinctes de p™ qui sont
moindres que p™ sont les produits des nombres qui correspondent
& ces racines primitives de p et des nombres de la forme 1 + kp
ol k est premier avec p sans étre plus grand que p. Une condition
nécessaire et suffisante pour qu'un nombre soit une racine pri-
mitive de p, sans étre aussi racine primitive de p™, est que ses
puissances p™* appartiennent a exposant p — 1, mod. p™.

Quand m = 2% p*tp” .. pi, ou p,, ps .., p, sont des
nombres premiers distincts, le groupe formé par le systeme
résiduel réduit, mod. m, est de rang 4, A -+ 1, 4 4 2 suivant que
ay est < 2, = 2, ou > 2, puisque le groupe des isomorphismes
du groupe cyclique d’ordre m est le produit direct des groupes
des 1somorphismes de ses sous-groupes de Sylow. Par suite le
nombre des nombres, en ce systéme résiduel réduit, qui sont des
résidus quadratiques, est ®(m) divisé par une puissance de 2
dont 'exposant est égal a 4, 4 + 1, A + 2 respectivement.

Une condition nécessaire et suffisante pour qu’un nombre de ce
systeme résiduel soit un résidu quadratique, mod. m, est qu’il
soit un résidu quadratique pour chacun des nombres 270, p*1, ..., pi»
puisque les carrés des opérateurs, dans le groupe donné d’ordre
®(m), constituent un groupe qui est le produit direct des sous-
groupes composés des carrés des opérateurs dans les groupes
d’1somorphismes des sous-groupes cycliques des ordres 27 P,
P ..., pi* respectivement.

Bien que le principal objet du présent article ait été de mettre
en évidence 'utilité de la conception de groupe en 1’étude des
congruences élémentaires, ce méme article peut aussi servir
d’introduction aux éléments de la théorie abstraite des groupes
considérée du point de vue de la Théorie des Nombres.

L'Enseignement mathém., 29¢ année; 1930. 2
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