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INTRODUCTION A LA THÉORIE DES CONGRUENCES

AU MOYEN DE LA THÉORIE DES GROUPES

PAR

M. G.-A. Miller (Urbana, 111.) 1.

Les nombres 0, 1, 2, m—1 sont dits constituer un système

résiduel complet,relativement au module m, où m est un entier

positif quelconque.
Ces nombres constituent un groupe cyclique G par rapport à

l'addition, mod. m, groupe dont la transformation identique est

représentée par zéro et dont l'ordre est m. Si n est un élément

quelconque de G et si destle plus grand facteur commun à m
et n,alors n engendre un groupe d'ordre m: d. En particulier,
G a autant d'éléments générateurs qu'il y a de nombres, dans le

système résiduel, qui sont premiers avec m. Une condition
nécessaire et suffisante pour que m soit premier est que chaque
nombre du système, excepté zéro, puisse jouer le rôle d'élément
générateur.

Le « totient » $ (m) de m ou indicateur de m est le nombre de

générateurs de G ou le nombre d'opérateurs, d'ordre m, en G.
Si d est un diviseur entier quelconque de m, alors G contient un
et seulement un sous-groupe d'ordre d et si d2l dn1

représentent tous les diviseurs entiers positifs de m, y compris m,
alors

(d2) -f + (\> (dJ — m

puisque le nombre des opérateurs, de l'ordre le plus élevé, dans
tous les sous-groupes cycliques d'un groupe quelconque est égal

1 Traduit de l'anglais par A. Buhl.



8 G. A. MILLER
à l'ordre de ce groupe. Soient et d% deux diviseurs entiers
positifs de m tels que m dxd^ alors

i
*('<>) *(<*,) *(«*,) TT

\=rPi

où p1? /?2, pisont les facteurs premiers communs distincts et
positifs de dxetd2. En particulier, quand et son^ premiers
entre eux,

<&(„,) (D (d,)$
Ceci résulte directement du fait que G est alors le produit

de ses sous-groupes cycliques, d'ordres d1? d2 respectivement,
et que

quand p est premier.
Les nombres d'un système résiduel complet qui sont premiers

avec m sont dits constituer un système résiduel mod.
Un système résiduel réduit constitue un groupe abélien par
rapport à la multiplication, mod. m, et ce groupe 0 est le groupe
des isomorphismes de G, puisque ses éléments représentent les
différents indices des puissances auxquelles les éléments de G

peuvent correspondre dans un automorphisme de G. Quand tous
les éléments de G sont multipliés par un élément de 0, il en résulte
un automorphisme de G. en vertu duquel ces produits, mod.

représentent une permutation des éléments de G. En particulier,
quand les éléments d'un système résiduel complet sont multipliés
par un nombre qui est premier avec le module et que les produits
sont réduits par rapport à ce module, il en résulte, à nouveau, ce

système résiduel complet. Les résidus des nombres naturels,
combinés par multiplication, ont été considérés comme le plus
important exemple d'un groupe abélien (l'ordre fini1.

Si le groupe G est prolongé par le groupe 0, il en résulte un
groupe dont l'ordre est le produit des ordres de G et 0. Ce groupe
est Yholomorphe de G. Il est non abélien quand 2. Quand m
est impair, il ne contient point d'élément invariant sauf l'élément
identique et, quand m est pair, son seul élément invariant, hors

1 H. Weber, Lehrbuch der Algebra, vol. 2S seconde édition, 1899, p. 60.



THÉORIE DES CONGRUENCES 9

l'élément identique, est l'élément d'ordre 2 contenu dans G.

Si nous représentons chacun des nombres d'un système résiduel

complet par une lettre différente, l'holomorphe de G apparaît
comme un groupe de substitution transitif concernant ces m

lettres. Il est clair que, dans un automorphisme de G, les auto-

morphismes des sous-groupes maxima dont les ordres sont des

puissances de nombres premiers sont indépendants l'un de

l'autre; il suit de là que 9 est le produit direct des groupes d'iso-

morphismes des sous-groupes de G dont les ordres sont des

puissances de nombres premiers.
Tout opérateur d'un groupe fini engendre un sous-groupe

cyclique de ce groupe. En particulier, chaque nombre du groupe
9 engendre un sous-groupe cyclique. Puisque l'ordre d'un groupe
est divisible par l'ordre de chacun de ses sous-groupes, on a,

lorsque a est premier avec m

C(^{'n)^] mod. m

On voit ainsi que le théorème de Fermât est un cas très particulier

du théorème bien connu de Lagrange relatif à l'ordre de

chaque sous-groupe d'un groupe. La démonstration de ce théorème

étant ainsi rendue très élémentaire, la question peut être
élargie, on le voit, quand il est nécessaire de retenir le théorème
de Fermât comme théorème séparé se rapportant cependant aux
éléments de la Théorie des groupes considérés d'un point de vue
élevé. Sous tout rapport, il semble indésirable de démontrer le
théorème de Fermât dans la Théorie des Nombres sans se soucier
de le comprendre en quelque aspect élémentaire de la Théorie des

Groupes. Des remarques similaires s'appliquent à nombre
d'autres théorèmes fondamentaux de la Théorie élémentaire des

Nombres et conduisent à conclure que c'est d'abord la Théorie des

Groupes qui doit intervenir, dans les exposés mathématiques
primordiaux, à cause de sa très grande généralité.

L'inverse d'un opérateur, de G, représenté par la lettre dans
le système résiduel complet, mod. m, est m — r. En fait, si tous
les éléments de G sont multipliés par m — 1, il en résulte un
automorphisme de G dans lequel chaque opérateur correspond à

son inverse. Si r est premier avec m, il en est de même — r
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et la somme de tous les nombres représentés, en I, comme ci-
dessus est

Si un opérateur de I est représenté par le nombre nly son
inverse est représenté par le nombre si 1, mod.

Tout opérateur de I peut correspondre à son inverse dans un
automorphisme de I mais non dans un automorphisme de

l'holomorphe de G quand I concerne des opérateurs dont l'ordre
excède 2. Le sous-groupe G est invariant dans cet holomorphe
mais le sous-groupe I n'est jamais invariant à moins que I ne
soit l'identité. Une condition nécessaire et suffisante pour que cet

holomorphe contienne un second sous-groupe cyclique invariant
d'ordre m. est que m soit divisible par 8. Quand cette condition
est satisfaite l'holomorphe de G est aussi l'holomorphe de ce
second sous-groupe cyclique invariant d'ordre m puisque tout
sous-groupe cyclique invariant d'un groupe transitif est composé
de substitutions régulières et de l'identité. De là suit ce théorème :

Unecondition nécessaire et suffisante pour qu'un groupe cyclique
d'ordre m soit un sous-groupe caractéristique de son
est que m ne soit pas divisible par 8. Si m est divisible par 8, le

groupe cyclique d'ordre m possède un double
De même que le symbole $(m) est employé pour représenter

le nombre d'opérateurs, de l'ordre le plus élevé, dans le groupe
cyclique d'ordre m, le symbole a été employé pour
représenter le nombre d'opérateurs, de l'ordre le plus élevé, dans le

produit direct de n groupes cycliques d'ordre m. Si p
' est la plus

haute puissance de p qui divise m, ce produit direct contient le

produit direct de n groupes cycliques d'ordre prx. Le nombre
d'opérateurs de l'ordre le plus élevé, en ce produit direct, est
évidemment pn«_

D'où il suit que le nombre d'opérateurs, de l'ordre le plus
élevé, dans le produit direct de n groupes cycliques d'ordre m est
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si Pi, P 2i•••?P) son^ ies facteurs premiers distincts de Par

conséquent, cette formule représente aussi le nombre de séries

ordonnées de nentiers d'un système résiduel complet, mod. m,
de telle sorte que m soit premier avec le plus grand commun
diviseur de chaque série.

Si nous considérons le double module p, ^(x) où p est un
nombre premier et (b (x)un symbole polynominal, irréductible
mod. p, de degré n1 il est évident que les pn polynomiaux qui
forment un système résiduel complet, mod. p, ^(x), constituent,

par rapport à l'addition, le groupe abélien d'ordre pn et du type
(1, 1, 1, En excluant zéro de ce système résiduel complet,
nous obtenons un système résiduel réduit mod. p, (ï3 (x) et ceci

constitue un groupe quand les éléments sont combinés par
multiplication. Le dernier groupe est cyclique car si l'un de

ses polynomiaux vérifie td1, mod. p, mais nulle équation de

plus faible degré et de même forme, il ne peut pas y avoir plus
de clpolynomiaux distincts, en ce système résiduel réduit, qui
satisfont à cette équation. De là, on conclut que le groupe formé

par ce système résiduel réduit a la propriété de ne pas contenir
plus d'un sous-groupe cyclique d'un ordre donné quelconque qui
soit un diviseur de pn — 1 ; par suite, il doit être cyclique.

Si nous multiplions tous les éléments du système résiduel
complet donné par un élément de ce système, il résulte une (1,1)
correspondance entre les éléments du système résiduel complet
original. Ceci représente un automorphisme quand les éléments
sont combinés par addition, mod. p. D'où il suit que les éléments
du groupe formé par ce système résiduel réduit peuvent être
regardés comme les opérateurs qui transformèrent en lui-même le

groupe formé par les éléments du système résiduel complet. Ces

deux groupes engendrent, de plus, un groupe d'ordre pn(pn — 1)

qui est toujours inclus en l'holomorphe du groupe formé par le

système résiduel complet. Une condition nécessaire et suffisante
pour qu'il coïncide avec cet holomorphe est 1, puisque le

groupe des isomorphismes d'un groupe abélien non cyclique est
toujours non abélien. Ceci met en lumière le fait que le groupe
des isomorphismes du groupe abélien d'ordre pn et du type
(1, 1, 1, implique toujours un opérateur d'ordre pn— 1 et
constitue, à ce sujet, une démonstration très élémentaire.
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f

Le rang du groupe abélien formé par un système résiduel réduit,
mod. m, est évidemment égal au nombre des générateurs indépen-

v

dants de son sous-groupe maximum dont l'ordre est une
puissance de 2. Une condition nécessaire et suffisante pour que m
ait des racines primitives est, par suite, que ce groupe abélien
ne concerne qu'un opérateur d'ordre 2. D'autre partie produit
prolongé de tous les opérateurs d'un groupe abélien est d'ordre 2,
ou revient à l'identité, suivant que ce groupe contient seulement -

un opérateur d'ordre 2 ou plus d'un tel opérateur. Puisqu'un
nombre premier a des racines primitives, il résulte de ce théorème

que (p — 1) EE — 1, mod. /?, l'opérateur d'ordre 2 dans le système
résiduel réduit, mod. p, étant clairement p — 1. Le théorème de

Wilson peut alors être regardé comme un cas particulier du
théorème relatif à l'ordre du produit prolongé de tous les opérateurs

d'un groupe abélien quelconque.
Le groupe des isomorphismes d'un groupe abélien quelconque

est évidemment le produit direct des groupes d'isomorphismes
de ses plus grands sous-groupes de puissance première. Puisque
chacun de ces derniers est d'ordre pair quand il n'est pas l'identité,

il résulte que m ne peut pas avoir de racines primitives
à moins qu'il ne soit puissance d'un nombre premier ou le double
d'une puissance d'un nombre premier impair. Il est aisé de voir
que lorsque m est de la forme 2 2, il ne peut pas avoir de

racine primitive puisque les trois nombres 2a — 1, 2a_1 ± 1,

de son système résiduel réduit représentent clairement des
i

opérateurs distincts d'ordre 2.

Le fait que tout nombre impair p a des racines primitives
résulte directement du théorème que la congruence 1,

mod. p, ne peut pas avoir plus de n racines distinctes en un
système résiduel réduit, mod. /?, puisque ce système résiduel
réduit doit alors constituer un groupe cyclique.

Pour prouver que pm, lorsque p est un nombre premier impair
" quelconque et m un entier positif quelconque, a des racines

primitives, il est, maintenant, seulement nécessaire de montrer
que, pourvu que m > 1, il doit y avoir des nombres dans le

système résiduel réduit, mod. pm, qui représentent des opérateurs

d'ordre pm~l.

Il est aisé de voir que 1 + pest un tel nombre puisque sa
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puissance p est de la forme 1 -f- 2,où k est premier avec p.
Donc le nombre 1 4- p correspond à un automorphisme du

groupe cyclique d'ordre pm, en lequel seulement p opérateurs
correspondent à eux-mêmes cependant qu'exactement 2 opérateurs
correspondent à eux-mêmes dans la puissance p de cet
automorphisme. De ceci suit directement que pv,
correspondent à eux-mêmes dans la puissance pK_1 de cet automorphisme
d'où il résulte encore que le système résiduel réduit, mod. pm,

p étant premier impair, représente un groupe cyclique par
rapport à la multiplication. Puisque le groupe des isomorphismes
du groupe d'ordre 2 est l'identité, il résulte que le système résiduel

réduit, mod. p, représente le même groupe que le système
résiduel réduit, mod. 2pm, si toutefois p est premier impair.

On peut donc noter que unecondition nécessaire et suffisante

pour qu'un nombre m > 2 possède des racines primitives est

qu'il y ait seulement un sous-groupe de chaque ordre premier dans
le système résiduel réduit de m, et, de ceci, on conclut que les seuls
tels nombres qui ont des racines primitives sont 2, 4, et 2pm,
si p est premier impair.

Le théorème mis en italique suggère une nouvelle méthode

pour établir, comme suit, l'existence de racines primitives:
Un nombre d'un système résiduel réduit, mod. pm, ne peut
évidemment pas correspondre à un opérateur d'ordre pa, à moins
qu'il ne soit de la forme 1 -j- kp, puisqu'autrement il représenterait

un automorphisme qui ne laisserait pas invariant un
opérateur d'ordre p dans le système résiduel complet. Donc un
nombre de ce système résiduel réduit ne peut pas correspondre
à un opérateur d'ordre p, à moins qu'il ne soit de la forme 1H
Ceci prouve qu'il y a seulement p — 1 tels nombres dans le
système résiduel réduit, mod. pm.

Une série d'opérateurs d'un groupe G est dite 1 complète
pour les puissances n si les puissances n de ces opérateurs donnent
toutes les puissances n différentes des opérateurs de G et s'il
n'y a pas deux opérateurs de la série ayant la même puissance
Les produits obtenus en multipliant tous les opérateurs d'une
série complète, pour les puissances n d'un groupe abélien H,
par un opérateur quelconque de ce groupe, constituent une

1 G-. A. Miller, Bulletin of the Amer. Math. Society, vol. 18,1912. p. 227.
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série complète pour puissances puisque les puissances des

opérateurs de H constituent un groupe. Les séries complètes
obtenues en multipliant une telle série complète quelconque,
par les différents opérateurs de H dont les ordres divisent n
ont été appelées séries complémentaires.Cesk séries complémentaires

impliquent chaque opérateur de H une fois et une fois
seulement. L'ordre du produit prolongé de tous les opérateurs
d'une série complète pour puissances de H est un diviseur de 2

puisque l'ordre du produit prolongé de tous les opérateurs d'un
groupe abélien quelconque doit diviser 2 Une condition nécessaire

et suffisante pour que cet ordre soit 2 est que le sous-

groupe formé par les puissances de H contienne une fois et
une fois seulement un opérateur d'ordre 2. En particulier,
condition nécessaire et suffisante pour que [(p — 1) : 2] appartienne
à Vexposant 4, mod. p, est que p — 1 soit divisible par 4; quand
p — 1 n'est pas divisible par 4, une condition nécessaire et suffisante

pour que

est qu'un nombre pair des carrés de ces nombres soient négatifs par
réduction à leurs moindres valeurs absolues, mod. p, puisque

est évidemment une série complète pour carrés mod.
Si le produit prolongé d'une série complète pour carrés d'un

système résiduel réduit, mod. m, est d'ordre 4, le produit
prolongé dè toute autre série complète pour carrés, eu égard au même
module, doit aussi être d'ordre 4 et si un tel produit se réduit
à l'ordre 2 ou à l'identité, tout autre tel produit est ou d'ordre 2

ou réduit à l'identité. En particulier, quand le système résiduel
réduit, mod. m,estun groupe cyclique, deux tels produits
prolongés ne-peuvent différer que par le signe puisque l'opérateur
d'ordre 2, en un tel groupe, est représenté par — 1. Au surplus,
une série complète pour carrés, d'un tel système, reste une telle
série si le signe d'un quelconque de ses éléments est changé,
et deux séries complètes pour carrés peuvent différer l'une de
l'autre seulement eu égard à de tels changements de signes. D'où

mod. p

1 2x I — • * p-i
9
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il résulte que si nous multiplions, tous les nombres de la série

1, 2, p— 1): 2, par un nombre m premier avec et que si

nous réduisons les produits à leurs moindres résidus absolus,
mod. p, le nombre m est un résidu quadratique ou un résidu

non quadratique de p suivant que le nombre des nombres

négatifs parmi ces produits est pair ou impair, puisque les

produits prolongés de ces deux résidus complets pour carrés diffèrent
seulement par le facteur m à la puissance (p — 1): 2. Ces

considérations relatives à la Théorie des Groupes contiennent maintenant

une démonstration du Lemme bien connu de Gauss. Le
fait que — 1 est un résidu quadratique de tous les nombres

premiers de la forme 1 + 4& et un résidu non quadratique de tous
les autres nombres premiers impairs est donc un cas très particulier

d'un théorème de la Théorie des Groupes qui affirme que
quand test un élément d'un groupe quelconque, tel que tm soit
d'ordre n,si pa et pc ß>0,sont les plus hautes puissances du
nombre premier p qui divise m et respectivement, l'ordre de

est lpa+ï où l est premier avec p.
Quand /3 0, l'ordre de t peut être divisible par une puissance

quelconque de p qui n'excède pas p''. D'où il résulte que, puisque
— 1 est un opérateur d'ordre 2 dans le système résiduel réduit,
mod. p, il ne peut pas être le carré d'un opérateur de ce système,
à moins que cet opérateur ne soit d'ordre 4, et quand ce système
résiduel contient deux opérateurs d'ordre 4, il faut alors que — 1

soit leur carré commun. C'est dire qu'une condition nécessaire
et suffisante pour que — 1 soit un résidu quadratique de p est

que p — 1 soit divisible par 4.

Le fait que le groupe des isomorphismes du groupe cyclique
d'ordre 2m, m>2,est du type (m — 2, 1) et contient un opérateur

d'ordre 2m_2 qui est commutatiî avec les opérateurs d'ordre
4, en ce groupe cyclique, implique que les carrés de tous ses
opérateurs sont commutatifs avec les opérateurs d'ordre 8 contenus
en ce groupe cyclique et aussi que ces opérateurs carrés doivent
correspondre aux nombres du système résiduel réduit qui sont
de la forme 1 + 8k.De là résulte de plus que tous les nombres de
cette forme sont les résidus quadratiques, mod. 2m, cependant
que tous les autres nombres impairs sont non-résidus quadratiques.

Quand m 2, ce groupe d'isomorphismes est d'ordre 2
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et de là suit qu'un nombre impair est un résidu quadratique ou
un nomrésidu quadratique de 4 suivant qu'il est de la forme
1 + 4 koude la forme 3 + 4 k.

Puisque le groupe des isomorphismes du groupe cyclique
d'ordre pm, p étant un nombre premier impair, est le groupe
cyclique d'ordre

les résidus quadratiques, en ce cas, sont les nombres, en le système
résiduel réduit, mod. pm, qui correspondent aux opérateurs du

produit direct du groupe cyclique d'ordre pm_1 par le groupe
cyclique d'ordre (p — 1) : 2. En particulier, un résidu quadratique

quelconque, mod. pa, « > 1, est aussi un résidu quadratique,
mod. pß, oùßestun entier positif arbitraire.

Puisque tout nombre de la forme 1 + correspond à un
opérateur, en le groupe des isomorphismes dont l'ordre est une
puissance de p, il résulte que tout nombre de cette forme est un
résidu quadratique, mod. pm. Si un nombre est de cette forme,
son carré est de la même forme et la plus haute puissance de p
qui divise le kde ce nombre est aussi la plus haute puissance de p
qui divise le k de son carré, puisque tous les opérateurs d'ordre
p", dans le groupe des isomorphismes, correspondent à un A: qui
est divisible par la puissance m — a — 1 de p mais par nulle
puissance de p plus élevée.

Du fait que le groupe du système résiduel réduit, mod. pm, est
^

le produit direct des groupes cycliques des ordres pm_1 et p — 1

respectivement, il résulte que si Zl712 représentent respectivement
un résidu quadratique et un non résidu quadratique de p, alors

h + hp, l2 + hp, k étant un entier quelconque, positif ou nul,
représentant respectivement un résidu quadratique et un non
résidu quadratique de pm.

Quand Zl7 Z2, prennent successivement toutes leurs valeurs
possibles de 1 à p — 1, cependant que k prend successivement

toutes les valeurs de 1 à pm_1, nous obtenons ainsi chaque
résidu quadratique et chaque résidu non quadratique, mod. pm,

une fois et une fois seulement. Ces considérations montrent
que si l est racine primitive de p, sans ainsi être racine primitive
de p2, alors l -f- kp,où kest premier avec p, est une racine

primitive de pm.
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Ceci fournit une démonstration, par la Théorie des Groupes,

du théorème suivant :

Chaque résidu quadratique et chaque non-résidu quadratique
d'une puissance positive arbitraire de p est aussi un résidu

quadratique ou un non résidu quadratique de toute autre puissance

positive de p, cependant que toute racine d'une puissance

positive de p, au moins aussi grande que p2, est aussi une racine

primitive de toute autre puissance positive de p.
Il y a pm~^Q>(p — 1) racines primitives distinctes de p qui

sont moindres que pm, m >1, mais ne sont pas ainsi racines

primitives de pm. Les racines primitives distinctes de pm qui sont
moindres que pm sont les produits des nombres qui correspondent
à ces racines primitives de p et des nombres de la forme 1 + kp
où k est premier avec p sans être plus grand que p. Une condition
nécessaire et suffisante pour qu'un nombre soit une racine
primitive de p, sans être aussi racine primitive de pm, est que ses

puissances pm~2appartiennent à l'exposant p — 1, mod. pm.

Quand m 2"° p"1 p*2 p"'-, où px, p2, p-, sont des

nombres premiers distincts, le groupe formé par le système
résiduel réduit, mod. m, est de rang À, 1 -f 1, / -(- 2 suivant que
a0 est <2, =2, ou > 2, puisque le groupe des isomorphismes
du groupe cyclique d'ordre m est le produit direct des groupes
des isomorphismes de ses sous-groupes de Sylow. Par suite le

nombre des nombres, en ce système résiduel réduit, qui sont des

résidus quadratiques, est §(m) divisé par une puissance de 2

dont l'exposant est égal à /, X + 1, X + 2 respectivement.
Une condition nécessaire et suffisante pour qu'un nombre de ce

système résiduel soit un résidu quadratique, mod. est qu'il
soit un résidu quadratique pour chacun des nombres 27°, p*1,..., pr-p

puisque les carrés des opérateurs, dans le groupe donné d'ordre
cl>(m), constituent un groupe qui est le produit direct des sous-

groupes composés des carrés des opérateurs dans les groupes
d'isomorphismes des sous-groupes cycliques des ordres 27°, p*1,
p*2, p'-;}respectivement.

Bien que le principal objet du présent article ait été de mettre
en évidence l'utilité de la conception de groupe en l'étude des

congruences élémentaires, ce même article peut aussi servir
d'introduction aux éléments de la théorie abstraite des groupes
considérée du point de vue de la Théorie des Nombres.
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