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88 H. MILLOUX

^ est positif à l'extérieur de la courbe (C), nul sur la courbe et

négatif à l'intérieur.
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Fig. 1.

Les courbes sur lesquelles — est égal à une constante donnée

/ 4tf2
(supérieure à —^—J sont analogues à (G) et s'emboîtent les unes

dans les autres.

6. — Remarque générale de comparaison des diverses équations (F). -—
Le deuxième membre de (F) est une fonction croissante de a. Donc si
deux intégrales des équations F (a) et F (a') où a' est supérieur à ay

passent en un même point d'abcisse pour x supérieur à x0 la
première intégrale (correspondant à a) est située constamment au-dessous
de la deuxième (correspondant à a').

Nous utiliserons souvent cette remarque.
Passons à l'étude détaillée de chaque cas.

Premier cas : > ^.

7. — Limitons d'abord l'étude à celle des portions des courbes
intégrales situées dans la bande définie plus haut (n° 2).

Désignons par x,#(0), x(^+ ^ les abscisses des points d'in-
7Z

tersection d'une telle portion avec les droites d'ordonnées —~, 0,

+ ^- Ces abscisses sont rangées par ordre de grandeur croissante:

sur la portion de courbe étudiée, x est fonction croissante de y.

Lorsque yest compris entre —~ et 0, ~ vérifie les inégalités:

a(1 + t g2y)+ t gythtf(0)< < 1 + t + t thz^—
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d'où l'on déduit:

f CO&*ydy < x(0) -xf-j
•J_ a -f- sin y cos yth x' — '

<
0

/ cos2 y dy
a -f- sin y cos y th (0)

et l'on constate, sur ces inégalités, que — ~j est borné

supérieurement et intérieurement, quelle que soit la valeur de x (0);
de plus, lorsque x (0) tend vers + co cette différence converge
uniformément vers:

o

cos2 y dyf a + sin y cos y

Lorsque y est compris entre 0 et + ^ vérifie les inégalités:

aQ + >g2î/) + » g 2/ th « (°) < <'g + 'g iha/+

d'où l'on déduit:

/ cos2 y dy /
TV x\ + "ô — XW

a + sin y cos th -f- ~

<
o

cos dyf a + sin y cos th (0)

Mêmes conclusions que précédemment. Lorsque x (0) tend vers

+ co la différence xi+ -^1 — #(0) converge uniformément vers:

TT

*9

cos2?/ dy
a -f- sin y cos y

0
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En résumé x^+^—x^—• ^ borné supérieurement et

intérieurement ^respectivement par l Par ï7/)

x — y) tend vers + 00 5 serapprocheindéfiniment de

+ -1

2

cos 2ydytzh + sin ycos yyV4__ ^

8. — On passe des portions de courbes intégrales précédentes aux
portions situées dans la bande:

z\ ^ îï
x — 2" — 2/<+Y

par symétrie par rapport à 0; puis aux courbes intégrales tout entières
par une suite de translations parallèles à 0 et de grandeur &tt, étant
un entier positif ou négatif.

* • T"Les points de la courbe intégrale, qui ont pour ordonnées ~ + /crc,
Jm

jouissent de la propriété suivante, qui est une traduction de la pro¬

chepriété du n° 7: ladifférence x|^ + krj — xT^ + (k — 1),tJ
7T

deux points consécutifs tend vers —jilorsque k tend vers d= oo.

En ces points, la tangente.à l'a courbe intégrale est parallèle à Oy.

9. — La régularité limite des points précédents nous conduit à la
question suivante: la courbe intégrale de (F) se
indéfiniment d'une courbe périodique lorsque x tend, vers ± oo (il suffît
de considérer le cas de + co).

La fonction th xtendant vers 1 quand x tend vers + go cette
courbe périodique ne peut être qu'une intégrale de Véquation:

jj; «(1 + «g2y) + tgy (1)

Comparons les valeurs des abcisses et correspondant à la valeur
y de l'ordonnée, sur une courbe intégrale de (F) et sur une courbe
intégrale de (1); la relation:

d(x -t) sin y cos y _ ih
ax cl+ sin y cos
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entraîne les inégalités:

d (s - 0 ^ __
2

(2)
dx "la — 1

^
2

e--x (27)
dx la+ 1

Désignons par X et T les valeurs des abscisses (respectivement
supérieures à # et £) correspondant à une valeur Y de l'ordonnée,
supérieure à y.De (2) et de (2') on déduit:

'-srn'" (3)

+ ' + <3'>

inégalités qui vont nous servir à établir qu'à une courbe intégrale de

(F) correspond une courbe périodique asymptote, intégrale de l'équation

(1).
Soit une suite de valeurs de X tendant vers + go :

Xlfx8l... (4)

et soit (cx), (c2), (cn) la suite correspondante de courbes intégrales
de l'équation (1), coupant aux points d'abcisses (4) la courbe intégrale
étudiée de l'équation (F); autrement dit: X3; Tn Xn;

A l'ordonnée y correspondent: d'une part l'abscisse x de la courbe
intégrale de (F), d'autre part une suite infinie tv t2l tn, d'abscisses
de points situés sur les courbes (cx), (c2) (cn) • •.; ces abscisses vérifient

les inégalités:

* 1
2X„ —2x1 <y nr — / f^ 2x 2X.[>-«» _ <x-tn< s—_ e-**n]2a+ 1 L« " — « J ^ ~ - — 1

déduites des inégalités (3) et (3'). La quantité \x — | est donc
bornée et les tn admettent au moins une valeur limite 1, soit t. Parmi
les indices 72, choisissons une suite infinie d'indices tels que les

correspondant tendent vers t: quitte à supprimer s'il le faut des Xn,
nous pouvons supposer que les tn tendent tous vers t (pour ne pas
introduire de nouvelles notations). Soit la courbe intégrale de

l'équation (1) passant par le point de coordonnées t et y. Toutes les
courbes intégrales de l'équation (1) se déduisent de l'une d'elles par
translation parallèle à 0;r, de sorte qu'en désignant par T l'abscisse
du point de (c)possédant même ordonnée que le point de (cn) d'abscisse
Tn Xn, les différences T — Tn et t— tn sont égales.

1 Us n'en admettent d'ailleurs qu'une. Ce point résulte de la suite du raisonnement.
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Des inégalités (3) et (3') on déduit alors les inégalités:

(<„ - - 2^1" (e'2X - e~Un) <x~t < (<„ - l)

+ 2«~l (e~2* - «""")

La courbe (c) est fee; l'indice est quelconque. Lorsque tend
vers + oo, les inégalités précédentes donnent:

^ 2# „—2a?e— ^x^t^jj—— e— (5)
2a + 1 2a

Lacourbe intégrale étudiée de Véquation (F) est donc asymptote à
la courbe intégrale (c) de Véquation (1), courbe périodique1.

Les inégalités (6) fournissent une limite de la distance de la courbe
étudiée et de sa courbe asymptote.

TV *
1

Deuxième cas: —.
À

10. — Etudions d'abord les portions situées dans la bande définie
au n° 2.

L'équation (F) peut s'écrire sous la forme:

^ + tg«/)2 — fgy (l — • (F')

Les inégalités:

J(1 + tg'ï) + «S2/)3

1Z

valables lorsque y est positif, fixent pour la différence xy-\- — x (0)

la borne supérieure tt et la borne inférieure 1. Précisons: x étant une

i Dans le problème d'Agrégation de 1928 figurent l'étude des courbes (7) et, (<?),
intégrales respectives des équations '

<r) •£.-** (*) £ cote v

yétant lié à x par l'équation (F). On consultera, pour l'étude de ces courbes, la solution
de M. Gambier. Je me borne à indiquer qu'une courbe (7) quelconque est asymptote à une
courbe périodique. Les courbes (S)jouissentd'une propriété analogue.
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