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i est positif & Pextérieur de la courbe (C), nul sur la courbe et
négatif & I'intérieur. |
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Les courbes sur lesquelles (T‘Z est égal & une constante donnée
ha® — 1\

supérieure a

o > sont analogues & (C) et s’emboitent les unes

dans les autres.

6. — Remarque générale de comparaison des diverses équations (F). —
Le deuxiéme membre de (F) est une fonction croissante de a. Donc si
deux intégrales des équations F(a) et F(a’) ou a’ est supérieur & a,
passent en un méme point d’abcisse x,, pour x supérieur a x, la pre-
miére intégrale (correspondant d a) est située constamment au-dessous
de la deuxiéme (correspondant & a’).

Nous utiliserons souvent cette remarque.

Passons a I’étude détaillée de chaque cas.

: | 1
PREMIER cAS: a > 5

7. — Limitons d’abord I'étude a celle des portions des courbes
intégrales situées dans la bande définie plus haut (n° 2).

Désignons par r(—— ;) , £(0), x<+ ;) les abscisses des points d’in-

tersection d’une telle portion avec les droites d’ordonnées — —, O,

2 Y
+5 - Ces abscisses sont rangées par ordre de grandeur croissante:

sur la portion de courbe étudiée, z est fonction croissante de y.

- Lorsque y est compris entre ——% et 0, % vérifie les inégalités:
2 | vdy | - T\
a(l +tg¥y) + gy tha(0) < = < a(l + tg?y) + tgy tha —3)
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d’ou 'on dédut:

0

"’ cos?y dy
v a + siny cosy thx(——

*)

cos?y dy
< :
a 4+ siny cosy th z(0)

et 'on constate, sur ces inégalités, que z(0) — a(—~ ) est borné
supérieurement et inférieurement, quelle que soit la valeur de z (0);

de plus, lorsque xz (0) tend vers -+ o, cette différence converge

uniformément vers:
cos?y dy
a + siny cosy

. = d , . ., .,
Lorsque y est compris entre 0 et + <, d—g vérifie les inégalités:

dy

a(l +1g%y) + tgy tha(0) < -7 < a(l + tg%y) + gy ‘hx(Jr %> ’

d’ou I'on déduit:

+3

s2y d :
a + siny cosylhx<+ >

0

cos®y dy
< . .
@ -+ siny cosy thz (V)

Mémes conclusions que précédemment. Lorsque z (0) tend vers

+ w0, la différence x<+ 7) — 2(0) converge uniformément vers:

(1K

v

cos?y dy
J a + siny cosy

Y]
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Enrésumé x( 4 <) —x(— =) est borné supérieurement et infé-

. . ! e '
rieurement <respect1vement par et par —> et, lorsque

ba
7 . , »
x<— —;) tend vers + o« , se rapproche indéfiniment de

anr
ba? — 1

i

01
t3

cos?y dy _ i
. a + siny cosy \ha® — 1 '

2

8. — .On passe des portions de courbes intégrales précédentes aux
portions situées dans la bande: |

= _r = r
z =<0 2—y<+2

par symétrie par rapport & 0; puis aux courbes intégrales tout entiéres
par une suite de translations paralléles & Oy, et de grandeur kr, k étant
un entier positif ou négatif.

Les points de la courbe intégrale, qui ont pour ordonnées % + km,
jouissent de la propriété suivante, qui est une traduction de la pro-
priété du n® 7: la différence X[T; - kT.':| — x[% + (k — 1)rr] de

_ o

deux points consécutifs tend vers ——lorsque k tend vers + oo.
ba? — |

En ces points, la tangé‘nte_é la courbe intégrale est paralléle & Oy.

9. — La régularité limite des points précédents nous conduit a la
question suivante: la courbe intégrale de (F) se rapproche-t-elle indé-
finiment d’une courbe périodique lorsque x tend vers + oo ? (il suffit
de considérer le cas de 4+ o). '

La_ fonetion .th x tendant-vers 1 quand x tend vers -+ o, cette
courbe périodigue ne peut étre qu’une intégrale de I'équation :

d _
gii = a(l + 1g°y) + tgy . - (1)

Comparons les'valeurs des abcisses x et ¢ correspondant & la valeur
~ y de Pordonnée, sur une courbe intégrale de (F) et sur une courbe
intégrale de (1); la relation: ~

d{z — 1) . sin y cos y
dzx " a + siny cosy

(1 — th z)
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entraine les inégalités:

d(x—t) 2 -2

2/
dz 24+ 1° (%)

Désignons par X et T les valeurs des abscisses (respectivement
supérieures & x et ) correspondant & une valeur Y de I'ordonnée,
supérieure a4 y. De (2) et de (2") on déduit:

~ m 1 —2X /1 —'2x 3

X T — gy ¢ >z —t — g (3)

X — T + L S B (3)
20 + 1 2a + 1

inégalités qui vont nous servir a établir qu’a une courbe intégrale de
(F) correspond une courbe périodique asymptote, intégrale de’équa-
tion (1).

Soit une suite de valeurs de X tendant vers + oo

X,, X,, .. X, .. (%)

1 n

et 01t (¢y), (¢y), ... (¢3) ... la suite correspondante de courbes intégrales
de I'équation (1), coupant aux points d’abcisses (4) la courbe intégrale
étudice de équation (F); autrement dit: T, = Xy; ... T, = X5 .

A Tordonnée y correspondent: d’une part I'abscisse x de la courbe
intégrale de (F), d’autre part une suite infinie ¢, ¢y, ... ¢y, ... d’abscisses
de points situés sur les courbes (¢;), (¢g) ... (cn) -..; ces abscisses véri-
fient les inégalités:

1
2a + 1

[e%!Xn . e—-‘lx] <z —t, < [6~2x . e—‘.’XnJ

2a — 1
déduites des inégalités (3) et (3'). La quantité |z — ¢, | est donc
bornée et les ¢, admettent au moins une valeur limite 1, soit . Parmi
les indices n, choisissons une suite infinie d’indices tels que les ¢,
correspondant tendent vers ¢: quitte & supprimer §’il le faut des X,,,
nous pouvons supposer que les ¢, tendent tous vers ¢ (pour ne pas
introduire de nouvelles notations). Soit (¢) la courbe intégrale de
I'équation (1) passant par le point de coordonnées ¢ et y. Toutes les
courbes intégrales de I'équation (1) se déduisent de I'une d’elles par
translation parallele & Oz, de sorte qu’en désignant par T I’abscisse
du point de (¢) possédant méme ordonnée que le point de (c,) d’abscisse
T, = X,, les différences T — T, et t — t, sont égales.

I Ils n’en admettent d’ailleurs qu'une. Ce point résulte de la suite du raisonnement.
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- Des inégalités (3) et (3’) on déduit alors les inégalités:

(tn - t) - : (e—-?x - 6—2Xn) <z—it< (tn - i)

1 ~2x -2X
e

La courbe (c) est fixe; 'indice n est quelconque. Lorsque n tend
vers 4+ o, les inégalités précédentes donnent:

1
T 92a + 1 - — 2a —1

e-—']x Lot £ 1 e-—?x ) (5)

La courbe intégrale étudiée de U'équation (F) est donc asymptote &
la courbe intégrale (c) de U'équation (1), courbe périodique?.

Les inégalités (6) fournissent une limite de la distance de la courbe
étudiée et de sa courbe asymptote.

. !
DEUXIEME CAS: @ = .

10. — Etudions d’abord les portions situées dans la bande définie
au no 2.
L’équation (F) peut s’écrire sous la forme:

dy 1, . | : ,
Te — gl +t8y) —tgy (L —tha) . (F')
Les inégalités:

1 d 1,
(1 +tgfy) < El% <z ,+ l_gy)z
valables lorsque y est positif, fixent pour la différence ‘x(—{— g) — z (0}

la borne supérieure 7 et la borne inférieure 1. Précisons: x étant une

1 Dans le probléme a Agrégatlon de 1928 ﬁgurent Pétude des courbes (7) et (J),
mtégrales respectlves des équatlons

a2
dx
y étant 1ié & x par l’équation (F). On consultera, pour I’étude de ces courbes, la solution

de M. Gambier. Je me borne & indiquer qu’une courbe (V) quelconque est asymptote & une
courbe périodique. Les courbes (4) jouissent d’une propriété analogue.

(7) ——-tgy, ,<3) = —cotgy ,

{
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