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MOUVEMENT NORMAL

PAR

Letterio Toscano (a Messing).

Dans cette note, nous nous proposons de traiter un probleme

de géométrie cinématique.

Nous appelons mouvement normal celui-la dont la droite qui
porte I'accélération du point mobile est perpendiculaire au rayon

vecteur par rapport & un point 0.

Soit le point O I’origine d’un triedre Oxyz et, suivant la méthode
vectorielle, I’équation caractéristique du mouvement normal du

point P est
dzp
T

(P—0) =0 (1)

On a identiquement

d(P — 0)? d [dP P dp
——— - — —_— —_— - p —_— j
o 26“[(” < (P O)J 2— > (P — 0) + (di

( )
d[

Sirest la grandeur du vecteur P — 0 et V la grandeur de la
vitesse du point P, la derniére relation peut s’écrire
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82 L. TOSCANO

A cette conclusmn on peut parvenir en apphquant les compo-
santes de la vitesse'et de ’accélération suivant le rayon vecteur,
la tangente au méridien et la tangente au paralléle qui passent
par le point mobile P, par référence aux coordonnées sphériques.

On a les formules

dr Vo ' dﬁ Vo = rsmﬂd—e

r dt ’ "dt dt
e —
Wr—dt;, —_r T — rsin?f
1 d d6> , (m)
7 o W2 ) _.
V\?__ rdt(' oy rsin 0 cosf 9t
' 1

d r2sin? dcp)

- ¢

W, =

<<

rsin 6 dt

Dans notre probléme on doit avoir W, = 0 et par la

dt2 = ( ) T r“nze(dt) : | ()

La vitesse est alors donnée par la

V?:yf_—i—v:—}—ve: dt>+ ( )—[—r2s11120( )——
- dt) dt2

On peut encore écrire (3) sous la forme
r— = (%) + (v)? .

Pour un mouvement plan quelconque, on a

dr)2+ rz(ﬁ 2.
dt dt/

- si le mouvement est normal on aura

*r . do\?
dtz \d(\)

2.
V2 — dr) + ,‘fl_'

et enfin

dt de? -
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On trouve ainsi la proposition:

Dans un mouvement normal la vitesse a la méme expression pour
un mouvement de l'espace ausst bien que pour un mouvement plan.

Nous considérerons ensuite les mouvements plans. L’accélé-
ration est donnée par (coordonnées polaires)

d; db a’QO
vV o— .
. \ dt dt - "
Mais
dzr . d 'dr> o d /dr db ( 2 dr d*0 . _<a’0>2
a2 —@\dt) T a\adia) T ae\a) TaaeE = "\&
et de la
dr d?0 <
db di dt
L’expression de W donne
_ @
W — | 2 ar o de @)
dy ' {logr dt

et cette derniére expression donne I'accélération dans un mouve-
ment normal plan.

ﬁ Pour la vitesse, on a encore
b
Vo ’l((fl* - <({6) 1 ((]r i
= G . | =
., (a’. log 7')2 1 d2r
- PR AR PR

Examinons quelques applications :
L. La trajectoire est une spirale logarithmique p = o, e .

On a
dg d?c dlog s
RN / v QO bl
de———)p, 750 = = 0%z, 70 = — b,
et alors

' 1 — 2 do\?
\\r: —2[3 ——-)
[ e — b ] dt

W Lt 1'"<i{f) :
: b dt
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Par 14 si la trajectoire relative au mouvement normal d’un
point est une spirale logarithmique, 1’accélération a 1’expression
"analogue au cas dans lequel un point parcourt une spirale
logarithmique avec vitesse angulaire constante par rapport
au pole. -

En effet, dans ce cas on a

W = w?(b? + 1)p

db
— = cost.

avec m oy

2. La trajectoire est une spirale hyperbolique p0 = k.
On a '

et alors ,
W —_ A (Zt- .

Aussi: Si un point parcourt une-spirale hyperbolique avec
mouvement normal par rapport au pdle, 'accélération est indé-
pendante du rayon vecteur et elle est directement proportion-
nelle au carré de la vitesse angulaire.

3. La trajectoire est une spirale d’Archimede p = 6.

On a .
d’p

=.1’ :O,‘ —_

d 62

©

&'&
(=)

et alors ‘,

. d0\?
7 — (¥ 2

W = (2.+,p)(dt :

4. La tfajeotoire est la courbe p = tg#8.

On a

do . d?p . dlog g

— = —_— = = —(1 2 ,

=1+ = 2e(l+ ) 20 (L +¢%)
et alors ’

_[q e’ (i?)2 |
'W_[2+1+92] )
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: : 1
5. La trajectoire est la courbe p = G-
cos
On a
do d*¢ . ] dlogo
— == L o : - = 1g0 .
= el = oetgtl ot 70 8

L’accélération est nulle et 'on a aussi un exemple de mouve-
ment plan normal avec accélération nulle.

Considérons ici le probléme inverse et déterminons tous les
mouvements normaux et plans dont les accélérations sont de
la forme

] dn\?

Le probleme dépend de I’équation différentielle
dp) L do
( + o .Z + /tO-Jé .

En divisant par p? et introduisant les logarithmes on passe &

dlog ¢\’ 1 d%s  dlogop
2 —_— ) <
di -1 o di? T df
En outre
l d? o d?logp d log
o db* de? db
et de la
d?log o dlog o d log
d 0* dl df
ds . .
En posant logp = s et i u, 1l suit
d
S S
us — u 4+ 1
et par intégration
2 arc cot 2u — | 0+ 0
— g — =
Vi Ve °
\/o &l

u

w|

G 'g .__:) (O + GO) :
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De plus haut, on a

1 e
—0-log cos‘/.—j(e+00\+c
p = e’ ;

posons e° = p, et enfin on trouve

] 3
_—'; 0—-10g COST (0+00)
P = Po€

qui donne une spirale logarithmique.

ETUDE D’UNE EQUATION DIFFERENTIELLE:

d
W — a1l + 1g°y) + 1gy tha (R
x i .

PAR

H. MirLoux (Strasbourg).

Cette équation différentielle est extraite du probléme de Calcul
différentiel et Intégral donné, en 1928, au Concours de 1’Agrégation
~des Sciences Mathématiques.

M. Gambier a publié, dans I’Enseignement Mathématique, une
solution compléte du probléme. Il m’a semblé intéressant de reprendre
a part, et d’une facon en général indépendante du probléme, I’étude
de I'équation (F): recherche de tous les types de courbes intégrales,

g . ’ 1
propriétés aux environs des asymptotes <a = —2—> ou des courbes

périodiques asymptotes (a > §>,Avar1a,t10ns, en fonction de a, lorsque
@ ne surpasse pas ;, de certaines courbes intégrales spéciales.

1. — Traitons d’abord briévement le cas: ¢ = 0. L’équation (F)
s’intégre immédiatement et donne:

sin y,

chzx .
chz,

siny =

Nous n’insisterons pasesur ce cas simple.
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