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APPLICATIONS DE IJANALYSE VECTORIELLE
A LA GEOMETRIE

PAR

O. Pyrarinos (Athenes).

1. — Soit
o, y, 2z =0 (1)

Péquation d’une surface rapportée a un systeme d’axes rectan-
gulaires Oxyz.

Nous supposerons dans ce qui suit, que la fonction o (z, y, z)
est déterminée et dérivable par rapport aux variables z, y, z et
que ses dérivées du premier et du second ordre par rapport &
ces variables ont aussi une valeur déterminée a chaque point
d’une portion de ’espace contenant la surface (1).

Ainsi, le vecteur grad ¢ = V¢ sera défini & chaque point de
cette portion de I’espace appelée le champ du vecteur.

La dérivée de ce vecteur a un point du champ par rapport a
une direction donnée peut étre considérée comme le produit
contracté du vecteur unitaire qui définit cette direction et d’un
systeme tensoriel symétrique du second ordre ayant comme
composantes les six dérivées partielles du second ordre de la
fonction o (x, y, z) par rapport aux variables x, y, z 1.

Si {, désigne un vecteur unitaire quelconque, la dérivée de
grad ¢ par rapport a la direction de ce vecteur a un point quel-
conque du champ est

d d - ¢
[ ] _ o) s — .7

1 BunbpEe, Tensoren und Dyaden, p. 193.
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(’est une fonction vectorielle linéaire de f L.

De cette définition, en tenant compte du fait qu'un systeme
tensoriel du second ordre définit & chaque point une transfor-
mation linéaire (affine) du corps des vecteurs attachés a ce point2,
résultent les propositions suivantes:

a) Les dérivées de grad ¢ a un point du champ, par rapport a
toutes les directions d’un méme plan, sont des vecteurs complanaires
-qut menés d’un méme point comme origine ont leurs extrémités sur
une ellipse ayant comme cenire ce point.

b) A deux directions normales 'une d l'autre du plan corres-
pondent deux semidiamétres conjugués de cette ellipse.

2. — Considérons maintenant une courbe tracée sur la
surface (1).
Soit
r= f(s) (2)

I’équation vectorielle paramétrique de cette courbe (s mesure
la longueur de ’arc de cette courbe & partir d’un de ses points).

_ ' as
& la normale & chaque point de la surface (1)) sont, tout le long
de cette courbe, orthogonaux et, par conséquent, leur produit
scalaire | 4

Les vecteurs d—.r = §, (un vecteur unitaire) et grad ¢ (paralléle

7, grade — 0 . | (3)
En différentiant la relation (3) par rapport a s nous aurons

d - - d(grad dt,
= (fo gradg) = 1, (gds o 7 grade =0

1 BupDE, Tensoren und Dyaden, p. 8.
2 BUDDE, loc. cil., p. 67.
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et comme
d (grad o)
ds

dt, -
ds p

= (1,V) gradp et 0
ou p, désigne la direction positive de la normale principale de
la courbe et k sa courbure, il vient

— (i, grad g) = hp, gradg + 1, (V) grade = 0 . (

-
~—

Si p, grad ¢ = 0 tout le long de la courbe (2), en d’autres
termes si la courbe (2) est une courbe asymptotique de la
surface (1), nous tirons de la relation (4)

t, (_I;OV) gradge = 0,
¢’est-a-dire: ou bien 50 est normal a (Zo V) grad ¢ ou
(t, v) grad o == 0.

Nous allons, plus bas, démontrer que, s’il existe sur une
surface ¢ (v, y, z) = 0 une famille de courbes telles que
(t, v) grad ¢ = 0 & chaque point de la surface, {, désignant un
vecteur unitaire paralléle & la tangente de la courbe de cette
famille qui passe par ce point, la surface est un cylindre.

Réciproquement: si ¢, (f, ¥) grad v = 0 tout le long de la
courbe (2), nous tirons de la relation (4)

A'.;O grade = 0 c¢’est-a-dire ou A= 0

ou p, grad o = 0; dans les deux cas la courbe (2) est une courbe
asymptotique de la surface (1) et, par conséquent:

La condition nécessaire et suffisante pour qu’'une courbe tracée
sur la surface (1) soit une courbe asymptotique de cette surface,
est que la dérioée de grad o par rapport a la direction de la tangente
a chaque point de cette courbe soit normale a cette direction ou nulle.

Supposons maintenant que le plan des dérivées de grad ¢ par
rapport aux directions du plan tangent & un point quelconque
de la surface (1) soit paralléle a la normale de la surface a ce
méme point.

Nous remarquons d’abord que, dans ce cas, il y aura a chaque
point de la surface au moins une direction asymptotique réelle:
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la direction normale au plan des dérivées de grad ¢ par rapport
aux directions du plan tangent & ce point, d’aprés la proposition,
que nous venons de démontrer et, par conséquent, il y aura au.
moins une série de courbes asymptotiques sur la surface.

Si (f, V) grad ¢ et (t;v) grad ¢ sont les _(_iériv_(ges de grado
par rapport aux directions asymptotiques #, et ¢, & un point
quelconque de la surface (1), d’aprés la supposition faite, les
vecteurs grad o, (¢, V) grad ¢ et (£, V) grad ¢ sont paralleles & un
meéme plan et par suite leur produit mixte

[grad g, (,V) grade , (5,V) gradg] = 0 . (5)

En méme temps, d’apres la proposition démontrée, les produits
géométriques (f, V) grad o X gradv et (t V) gradp X grad ¢
sont respectivement paralleles aux vecteurs ¢, et #, et, par consé-
quent, leur produit géométrique

{(ZOV) grad » X grad go} X 3(7{,V) grad ¢ X gradq;} = M, X -I; ,

mais

% (t, V) grad ¢ x grad ¢ : X 4 (;;V) grad ¢ X gradcpf
— grad g [grad ¢ (,,V) grad ¢, (,V) grad ¢]

— (t,V) grad ¢ [grad ¢, (t,V) grad g, grade] = 0

et par suite t, X £, = 0 ou {, =1,.

En d’autres termes, les directions asymptotiques & chaque
point de la surface coincident et la surface est développable.

Réciproquement: si la surface est développable, la dérivée
de grad ¢ & un point quelconque de la surface par rapport & la
direction de la génératrice rectiligne qui passe par ce point est
paralléle a ce vecteur, le vecteur grad ¢ ayant, d’aprés une
proposition connue de ces surfaces, une direction constante le
long de chaque génératrice rectiligne de la surface; par consé-
quent, le plan des dérivées de grad ¢ par rapport aux directions
du plan tangent & chaque point d’une telle surface est paralléle
a la normale & ce méme point de la surface. Ainsi: Pour que la
normale & chaque point d’'une surface ¢ (X, y, z) = 0 soit paralléle
au plan des dérivées de grad ¢ par rapport aux directions du plan
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tangent & ce méme point de la surface, il faut et il suffit que la
surface soit développable.

3. — Soit n, = T%Z%l le vecteur unitaire ayant la direction
du grad 0 & un poi}lt de la surface (1) et [, un vecteur unitaire
paralléle‘é une des directions principales a ce point de la surface
(direction de la tangente d’une des lignes de courbure qui passent
par ce point).

D’aprés la propriété connue des lignes de courbure, que les
normales de la surface le long d’une telle courbe constituent une

surface développable, nous aurons la relation

[T 10 (I V) 1] = 0 . (6)
Mais
o= 7w grade 1 g orad o (1. ¥ 1 ‘
(lV)ny = (I, V) grad 9| | grad o] (l, V) grad g + gradg (f, )l_grad— o]’

par conséquent, la relation (6) devient

- - 1 - ~ 1 )
S o . = 0
[ZO, n“';]gradcp](l"v) grado + (/, V) Tgradg] .grad ¢ Sil

ou

Iy gradg. (I,V) gradg] = 0 . (7)

Réciproquement: si la relation (7) a lieu tout le long d’une
courbe tracée sur la surface (1), [, étant paralléle & la tangente
a chaque point de la courbe, la courbe est une ligne de courbure
de la surface, parce que cette relation est équivalente & la relation
(6) qui constitue la condition nécessaire et suffisante pour cela.

Supposons maintenant que la dérivée de grad ¢ par rapport
a la direction de la tangente a chaque point d’une courbe tracée
sur la surface (1) soit normale & grad ¢. Dans ce cas, le vecteur
grad o a tout le long de cette courbe une valeur absolue constante;
inversement, si tout le long d’une courbe tracée sur la surface (1)
le vecteur grad ¢ a une valeur absolue constante, la dérivée de ce
vecteur par rapport a la direction de la tangente a chaque point
de cette courbe sera normale a ce vecteur.

Par conséquent, les équations de ces courbes sont o = 0,
‘grad o| = C ot |grad 9| désigne la valeur absolue du grad ¢.
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La direction de la’tangente a chaqlie point d’une telle courbe

rad o
' Ig—rad———] 4 ce méme point de

est celle du vecteur rot n, ol ny, =
la surface LA

Nous allons mamtenant démontrer la propos1t10n mentlonnee

au § 2. ,
Si la surface ¢ (z, y, z) = - 0 est cylindrique, on, voit facilement,
en considérant la forme générale de I’équation de ces surfaces,
que grad o est constant le long de chaque génératrice rectiligne
de la surface; par conséquent, la dérivée de ce vecteur par rap- -
port & la direction de la génératrice & chaque point de la surface
est nulle.

Réciproquement: si & chaque point de la surface q>(x Y, 2) =10
(t, V) grad o =0, t, étant un vecteur unitaire paralléle a la
tangente de celle des courbes d’une certaine famille recouvrant
la surface, qui passe par ce point, la surface ¢ = 0 est un cylindre.

Nous remarquons d’abord que, le vecteur grad ¢ étant tout
le long d’une telle courbe constant, le plan tangent de la surface
a chaque point de cette courbe sera le méme; par conséquent,
la surface est développable et les courbes sont les génératrices
rectilignes de cette surface.

D’ailleurs, comme tout le long d’une telle courbe le vecteur
grad ¢ a une valeur absolue constante, la famille de ces courbes
a pour équations: ¢ = 0, jgrad ¢ | = C.

Nous allons maintenant démontrer que rot n, est constant le
long d’une telle courbe. Il s’ensuit que les génératrices rectilignes
de la surface sont paralléles et que la surface est cylindrique.

En effet, pour que les courbes ¢ = 0, |grad ¢| = G soient
paralléles, il faut et il suffit que la valeur absolue de rot r, le long
~ d’une telle courbe soit conStante 2

Mais (8) rot Ny = i grad ¢ X grad ¢ ou ¢ = |grad ¢ |.

| grad ¢ est constant le long d’une telle courbe; il suffit donc de
prouver que grad ¢ reste aussi constant sur cette courbe. ‘
A cette fin nous remarquons que

. gra,d L!) — __2_1:$ gpad 4)2 .

1 WEATHERBURN, On families of Surfaces. Mathematische Annalen, 99, 3, S. 473 (1928).
.2 WEATHERBURN, loc. cit., p. 474.
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et, comme
grad J? = 2(grad ¢ V) grado ,
il vient |
grad ¢ = T:J (grad @ V) grad ¢
Si done {, désigne un vecteur paralléle & la génératrice qui
passe par un point de la surface ¢ = 0, la dérivée de grad J par
rapport a cette direction est

— _ 1 1
(t, V) grad & = (grad ¢ V) grad ¢ . (¢, V) T + 7 (t, V) (grad 9 V) grad ¢ ,
ou
— 1 —
(t, V) grad ¢ = 3 (to V) (grad ¢ V) grad ¢ ,
— 1 . :
parce que ({, V)5 =0 (f étant constant le long de cette
droite). |
Mais

(t, V) (grad o V) grad ¢ =

% (Zo V) grad 9 V 2 grad ¢ + (grad ¢ V) (?0 V)grade = 0, 1 (a)

1 L’identité (a) peut étre démontrée d’une maniére plus générale comme il suit.

Soit u un vecteur fonction du point (x, v, 2); nous supposons que ses composantes
U1, Us, ug par rapport au systéme de coordonnées sont des fonctions continues et
dérivables des x, y, z. Si i, j, k désignent les trois vecteurs fondamentaux de notre
systeme de coordonnées, nous aurons

U = Ul + uU2j + usk .
La dérivée de ce vecteur par rapport a la direction du vecteur unitaire vy sera
(o V)u = (Vo v) Uy + j(Vo V)uz + R(vp V)Us = i0Vp- YU + jVo-VUs + RUg- VU3 .

Considérons maintenant v, aussi comme fonction des x, y, z et cherchons la diffé-

rentielle du vecteur (vgv)wu correspondant & un déplacement infiniment petit dr du
point.
Cette différentielle sera

' d(@Wev)u = (drv) (Wev)u = id(Vo- vuy) + jd(¥o-vus) + kd(vo-vus) ;
mals

d(i—io'\'ul) = dﬁo'vul + Eod(vul)
ou, comme _
di—Jo = (dg"V){Jo et d(V’U.l) = v(dul) N
d(v-vuy) = (drv)v-vus + vo-v(duy) = g(dfv)ﬁov u + (V) (drv)uy .
En conséquence, nous aurons

(drv) @V a = {(drv)Tov | i + (Bov) (dre)a -

Pour la dérivée de (v,v)u par rapport & la direction i, du déplacement considéré,
nous tirons de la la formule

(o) (T U = § (o V)T v {u + (B ¥) (f v)u -
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puisque (f ¥) grad o = 0; par conséquent, le vecteur grad ¢
reste constant le long de cette droite.

Il résulte ainsi del’identité (8) que rot n, est lui-méme constant
le long de chaque génératrice rectiligne de la surface; par consé-
~ quent, ces droites sont paralléles.

- Supposons maintenant que les ‘courbes ¢ = 0, |grad ¢| = C-
soient des lignes de courbure de la surface ¢ = 0.

Dans ce cas, la dérivée de grad ¢ par rapport a la direction
de la tangente d’une telle courbe & un point quelconque de la
surface est un vecteur paralléle a cette direction, parce qu’il est
paralléle en méme temps au plan tangent de la surface et au plan
normal mené par la tangente de la courbe.

Réciproquement: si la dérivée de grad p par rapport a la
direction de la tangente a chaque point d’une courbe de la
famille ¢ = 0, |grad ¢| = C est paralléle & cette direction, la
relation

[t—o grad o (£, V) grad q;] =0,

ol 7, est un vecteur paralléle & la tangente, sera vérifiée tout le
long de la courbe; par conséquent, la courbe sera une ligne de
courbure de la surface. _

Ainsi: la condition nécessaire et suffisante pour que les courbes
o = 0, |grad o| = C soient des lignes de courbure de la surface
¢ =0 est que la dérivée de grad ¢ par rapport a la direction de la
tangente a chaque pomt d’une telle courbe soit paralléle d cette
direction. '

Nous remarquons maintenant que, dans ce cas, les dérivées
de grad ¢ par rapport aux directions principales & chaque point
de la surface ¢ = 0 sont normales entre elles. En effet, I'une est
paralléle & la tangente de la courbe ¢ = 0, |grad | =C qui passe
par ce point, ’autre est paralléle au plan normal & cette tangente.
Par conséquent, comme ces deux vecteurs sont en méme temps
deux semidiamétres conjugués de I'ellipse des dérivées de grad o
par rapport aux directions du plan tangent & ce point de la
surface, ils doivent coincider avec les axes de cette ellipse.

Réciproquement, supposons que les dérivées du grad c‘p' par
rapport aux directions principales & un point quelconque de
la surface ¢.= 0 soient dirigées suivant les axes de l’ellipse des
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dérivées de grad o par rapport aux directions du plan tangent
a ce point de la surface.

En effet, soient [, et [, deux vecteurs unitaires respectivement
paralléles aux deux directions principales, & un point de la
surface et ([, V) grad o, (I,v) grad o les dérivées de grad ¢ par
rapport a ces directions; ces deux vecteurs sont orthogonaux en
vertu de notre hypothése et, par conséquent, leur produit

scalaire
(_/OV) grad ¢ (/(/) V) grad g = 0 . (9)

D’ailleurs, les produits vectoriels (I, V) grad ¢ x grad ¢ et
(Iv) grad ¢ X grad p sont aussi orthogonaux, pulsqu 'ils sont
respectivement paralléles & I et I

Nous avons donc

g(TOV) grad o X gradq;%.{(Z)V) grad 9 X gr‘adcg} = 0

ou
{ (I,V) grad ¢ . (,,V) grad ¢ | (grad 9)* —

— g ([,V) grad g . grad ¢ % % (7:)"') grade .grad ¢ { = 0

ce qui, en égard a (9), peut s’écrire:

g (70V) grad ¢ . grad ¢ } % (/;V) grad ¢ . grad go} = 0 .
En d’autres termes, l'un des vecteurs ([,v) grad c, (I.v) grad P
est normal & gradg. En conséquence, l'une des directions
principales est parallele & la tangente de la courbe ¢ = 0,
| grad 9| = C qui passe par ce point.
Nous obtenons ainsi le théoréme suivant:

Pour que les dérivées de grad o par rapport aux directions
principales a chaque point de la surface ¢ = 0 sotent en grandeur
et en direction les demi-axes de Uellipse des dérivées de ce vecteur
par rapport aux directions du plan tangent a ce point de la surface,
il faut et il suffit que les courbes ¢ =0, |grad ¢| = C soient des
lignes de courbure de la surface ¢ = 0.
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