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APPLICATIONS DE L'ANALYSE VECTORIELLE
A LA GÉOMÉTRIE

PAR

0. Pylarinos (Athènes).

1. — Soit
© (x, y, 0 (1)

l'équation d'une surface rapportée à un système d'axes
rectangulaires 0 xyz.

Nous supposerons dans ce qui suit, que la fonction 2/,

est déterminée et dérivable par rapport aux variables x, y, z et

que ses dérivées du premier et du second ordre par rapport à

ces variables ont aussi une valeur déterminée à chaque point
d'une portion de l'espace contenant la surface (1).

Ainsi, le vecteur grad 9 Y 9 sera défini à chaque point de

cette portion de l'espace appelée le champ du vecteur.
La dérivée de ce vecteur à un point du champ par rapport à

une direction donnée peut être considérée comme le produit
contracté du vecteur unitaire qui définit cette direction et d'un
système tensoriel symétrique du second ordre ayant comme
composantes les six dérivées partielles du second ordre de la
fonction 9 (x, 2/, z) par rapport aux variables x, y, z 1.

Si t0désigne un vecteur unitaire quelconque, la dérivée de

grad 9 par rapport à la direction de ce vecteur à un point
quelconque du champ est

1 Budde, Tensoren und Dyaden, p. 193.
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OÙ

d2q>
«
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dz d dzdy dz2

C'est une fonction vectorielle linéaire de t0

De cette définition, en tenant compte du fait qu'un système
tensoriel du second ordre définit à chaque point une transformation

linéaire (affine) du corps des vecteurs attachés à ce point2,
résultent les propositions Suivantes :

a) Les dérivées de grad y à unpoint du par rapport à

toutes les directions dun mêmeplan,sont des vecteurs complanaires
qui menés d'un même point comme origine ont leurs extrémités sur
une ellipse ayant comme centre ce

b) A deux directions normales F une à Vautre du plan
correspondent deux semidiamètres conjugués de cette

2. — Considérons maintenant une courbe tracée sur la
surface (1).

Soit
r M (2)

l'équation vectorielle paramétrique de cette courbe (s mesure
la longueur de l'arc de cette courbe à partir d'un de ses points).

Les vecteurs ^ to (un vecteur unitaire) et grad y (parallèle

à la normale à chaque point de la surface (1)) sont, tout le long
de cette courbe, orthogonaux et, par conséquent, leur produit
scalaire

70 grad 9 0. (3)

En différentiant la relation (3) par rapport à s nous aurons

1 Budde, Tensoren und Dyaden, p. 8.
2 Budde, loc. cit., p. 67.
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et comme

dis.Tada») ,~r-\ ^

d$
' (/0V) grad 7

où p0 désigne la direction positive de la normale principale de

la courbe et k sa courbure, il vient

(t0grad9) /\p0 grad -f t0(tY) grad ® 0 (4)

Si p0 grad 9 0 tout le long de la courbe (2), en d'autres
termes si la courbe (2) est une courbe asymptotique de la
surface (1), nous tirons de la relation (4)

Srad f 0 -

c'est-à-dire: ou bien t0est normal à V) grad 9 ou
(t0 V) grad 9 — 0.

Nous allons, plus bas, démontrer que, s'il existe sur une
surface 9 (x,y, z) 0 une famille de courbes telles que

(t0V) grad 9 0 à chaque point de la surface, t0 désignant un
vecteur unitaire parallèle à la tangente de la courbe de cette
famille qui passe par ce point, la surface est un cylindre.

Réciproquement: si ^0(^o^) grad 9 0 tout le long de la
courbe (2), nous tirons de la relation (4)

kpQ grad 7 0 c'est-à-dire ou 0

ou p0 grad 9 — 0; dans les deux cas la courbe (2) est une courbe

asymptotique de la surface (1) et, par conséquent:

La condition nécessaire et suffisante pour qiïune courbe tracée

sur la surface (1) soit une courbe asymptotique de cette

est que la dérivée de grad 9 parrapport à la direction de tangente
à chaque point de cette courbe soit normale à cette direction ou nulle.

Supposons maintenant que le plan des dérivées de grad 9 par
rapport aux directions du plan tangent à un point quelconque
de la surface (1) soit parallèle à la normale de la surface à ce
même point.

Nous remarquons d'abord que, dans ce cas, il y aura à chaque
point de la surface au moins une direction asymptotique réelle:

et
dt„
ds

k P 0
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la direction normale au plan des dérivées de grad 9 par rapport
aux directions du plan tangent à ce point, d'après la proposition
que nous venons de démontrer et, par conséquent, il y aura au
moins une série de courbes asymptotiques sur la surface.

Si {to V) grad 9 et (^V) grad 9 sont les dérivées de grad y
par rapport aux directions asymptotiques t0 et à un point
quelconque de la surface (1), d'après la supposition faite, les
vecteurs grad 9, (70 v) grad 9 et (t'0 V) grad 9 sont parallèles à un
même plan et par suite leur produit mixte

[grad y, (70V) grad y(tgrad0 (5)

En même temps, d'après la proposition démontrée, les produits
géométriques (£0 V) grad 9 X grad ^ et (^V) grad 9 X grad 9
sont respectivement parallèles aux vecteurs t0 et t'Q et, par
conséquent, leur produit géométrique

I (l?)grad fXgrad y|X j (i'0V) grad y X grad y | à70 X

mais
I &V) grad y x grad y J x j (t0V) grad y x grad y j

gra<* f [grad y (70 V) grady,(t0 V) grad y]

— («oV) grad y[grady,(^0V) grad grad y] 0

et par suite t0X t'00 ou tQt'0.En d'autres termes, les directions asymptotiques à chaque
point de la surface coïncident et la surface est développable.

Réciproquement: si la surface est développable, la dérivée
de grad 9 à un point quelconque de la surface par rapport à la
direction de la génératrice rectiligne qui passe par ce point est

parallèle à ce vecteur, le vecteur grad 9 ayant, d'après une
proposition connue de ces surfaces, une direction constante le

long de chaque génératrice rectiligne de la surface; par
conséquent, le plan des dérivées de grad 9 par rapport aux directions
du plan tangent à chaque point d'une telle surface est parallèle
à la normale à ce même point de la surface. Ainsi: que la
normale à chaque point d'une surface 9 (x, y, z) ~ 0 soit parallèle
au plan des dérivées de grad 9 par rapport aux directions du plan
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tangent à ce même point de la surface, il faut et il suffit que la

surface soit développable.

3. — Soit n„
g'ad le vecteur unitaire ayant la direction

I grac> I

du grad cp à un point de la surface (1) et l0 un vecteur unitaire

parallèle à une des directions principales à ce point de la surface

(direction de la tangente d'une des lignes de courbure qui passent

par ce point).
D'après la propriété connue des lignes de courbure, que les

normales de la surface le long d'une telle courbe constituent une

surface développable, nous aurons la relation

7o"O(*OVK] 0 (6)

Mais

V> "0 (hV) £V) grad „ + grad f (70 V) ;

par conséquent, la relation (6) devient

r° "• • i r^d^j(i»V] grad grad I 0

OU

[lo ' ^rad 9 - (*o ^rad y] 0 (7)

Réciproquement: si la relation (7) a lieu tout le long d'une
courbe tracée sur la surface (1), /0 étant parallèle à la tangente
à chaque point de la courbe, la courbe est une ligne de courbure
de la surface, parce que cette relation est équivalente à la relation
(6) qui constitue la condition nécessaire et suffisante pour cela.

Supposons maintenant que la dérivée de grad 9 par rapport
à la direction de la tangente à chaque point d'une courbe tracée
sur la surface (1) soit normale à grad 9. Dans ce cas, le vecteur
grad 9 a tout le long de cette courbe une valeur absolue constante;
inversement, si tout le long d'une courbe tracée sur la surface (1)
le vecteur grad 9 a une valeur absolue constante, la dérivée de ce

vecteur par rapport à la direction de la tangente à chaque point
de cette courbe sera normale à ce vecteur.

Par conséquent, les équations de ces courbes sont 9 0,
J grad 9 I G où j grad 9 | désigne la valeur absolue du grad 9.
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La direction de la tangente à chaque point d'une telle courbe

est celle du vecteur rot n0où n0 — ^ ce même point dé

la surface 1.

Nous allons maintenant démontrer la proposition mentionnée
au § 2.

Si la surface y (x, y, z)0 est cylindrique, on voit facilement,
on considérant la forme générale de l'équation de ces surfaces,

que grad y est constant le long de chaque génératrice rectiligne
de la surface; par conséquent, la dérivée de ce vecteur par
rapport à la direction de la génératrice à chaque point de la surface
est nulle.

Réciproquement: si à chaque point de la surface y (#, ?/, 0
(70 v) grad y 0, étant un vecteur unitaire parallèle à la
tangente de celle des courbés d'une certaine famille recouvrant
la surface, qui passe par ce point, la surface y 0 est un

Nous remarquons d'abord que, le vecteur grad y étant tout
le long d'une telle courbe constant, le plan tangent de la surface
à chaque point de cette courbe sera le même; par conséquent,
la surface est développable et les courbes sont les génératrices
rectilignes de cette surface.

D'ailleurs, comme tout le long d'une telle courbe le vecteur
grad y a une valeur absolue constante, la famille de ces courbes

a pour équations: y 0, j grad y | G.

Nous allons maintenant démontrer que rot % est constant le
long d'une telle courbe. Il s'ensuit que les génératrices rectilignes
de la surface sont parallèles et que la surface est cylindrique.

En effet, pour que les courbes y 0, j grad y | G soient
parallèles, il faut et il suffit que la valeur absolue de rot n0 le long
d'une telle courbe soit constante 2.

— <i

Mais (8) rot n0 ^ grad y X grad où | grad y |. Or

grad y est constant le long d'une telle courbe; il suffit donc de

prouver que grad reste aussi constant sur cette courbe.
A cette fin nous remarquons que

1

grad d>Srad T

1 Weatherburn, On families of Surfaces. Mathematische 99, 3, S. 473 (1928).
2 Weatherburn, loc. cit., p. 474.
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et, comme
grad <L2 2 (grad V) grad ©

il vient
grad — (grad © V) grad

V

Si donc t0désigne un vecteur parallèle à la génératrice qui

passe par un point de la surface 9 0, la dérivée de grad ^ par
rapport à cette direction est

(t0 V) grad (grad çp V) grad y(t0V)-- + — (t0 V) (grad © V) grad çp

V V

ou
1 -(«0v) grad + j; (to v) (grad f v) grad V
i

parce que (jtoY)y 0 étant constant le long de cette
V

droite).
Mais

(~o V) (grad V) grad

{ (*o grad ^ 1 grad + (grad (to V) grad 0 '
1 (rt)

1 L'identité (a) peut être démontrée d'une manière plus générale comme il suit.
Soit uun vecteur fonction du point (v, y,nous supposons que ses composantes

u2, u3par rapport au système de coordonnées sont des fonctions continues et
dérivables des oc, y, z. Si i,j,k désignent les trois vecteurs fondamentaux de notre
système de coordonnées, nous aurons

u uii+ Uoj +
La dérivée de ce vecteur par rapport à la direction du vecteur unitaire vo sera

(vov)ü i(v0^)u1 + j(vov)u2+ k(v0v)u3— + jvQ-\u2 +
Considérons maintenant v0 aussi comme fonction des x, y, z et cherchons la

différentielle du vecteur (v0v)ücorrespondantà un déplacement infiniment petit du
point.

Cette différentielle sera

d(vov)u (drv)(r»o v)u id(7o-vui) + + ;
mais

d(vo-vui) dvo-vui + v0d(vui)
ou, comme dv0(drv)v0et d(vui) v

d(V'VU1) (drv)v-vu1 + ü0-v(dui) j v j + v) (dfv)ui
En conséquence, nous aurons

(drv)(rv)uj (drv)70v j ü + (vov)(drv)û •

Pour la dérivée de (r0v)u par rapport à la direction t0 du déplacement considéré,
nous tirons de là la formule

Cov) (r0 v)u j (70 v) v0 v j + (v0 v) (t0 v)u
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puisque (£0V) grad 9 0; par conséquent, le vecteur grad J/

reste constant le long de cette droite.
Il résulte ainsi de l'identité (8) que rot n0 est lui-même constant

le long de chaque génératrice rectiligne de la surface ; par
conséquent, ces droites sont parallèles.

Supposons maintenant que les courbes 9 0, |grad 9) G

soient des lignes de courbure de la surface 9 0.

Dans ce cas, la dérivée de grad 9 par rapport à la direction
de la tangente dJune telle courbe à un point quelconque de la
surface est un vecteur parallèle à cette direction, parce qu'il est

parallèle en même temps au plan tangent de la surface et au plan
normal mené par la tangente de la courbe.

Réciproquement: si la dérivée de grad 9 par rapport à la
direction de la tangente à chaque point d'une courbe de la
famille 9 0, |grad tp| C est parallèle à cette direction, la
relation

\Jo grad * PoV) grad <p] 0
»

où t0est un vecteur parallèle à la tangente, sera vérifiée tout le

long de la courbe; par conséquent, la courbe sera une ligne de

courbure de la surface.
Ainsi: la condition nécessaire et suffisante pour que les courbes

9 0, |grad 9I C soient des lignes de courbure de la surface

9 —0 est que la dérivée de grad 9 par rapport à la direction de la

tangente à chaque point d'une telle courbe soit parallèle à cette

direction.
Nous remarquons maintenant que, dans ce cas, les dérivées

de grad 9 par rapport aux directions principales à chaque point
de la surface 9 0 sont normales entre elles. En effet, l'une est

parallèle à la tangente de la courbe 9 — 0, |grad 9I — G qui passe

par ce point, l'autre est parallèle au plan normal à cette tangente.
Par conséquent, comme ces deux vecteurs sont en même temps
deux semidiamètres conjugués de l'ellipse des dérivées de grad 9

par rapport aux directions du plan tangent à ce point de la
surface, ils doivent coïncider avec les axes de cette ellipse.

Réciproquement, supposons que les dérivées du grad 9 par
rapport aux directions principales à un point quelconque de

la surface 9 — 0 soient dirigées suivant les axes de l'ellipse des
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dérivées de grad 9 par rapport aux directions du plan tangent
à ce point de la surface.

En effet, soient T0 et % deux vecteurs unitaires respectivement

parallèles aux deux directions principales, à un point de la

surface et (70Y) grad 9, (I^Y) grad 9 les dérivées de grad 9 par

rapport à ces directions; ces deux vecteurs sont orthogonaux en

vertu de notre hypothèse et, par conséquent, leur produit
scalaire

(~/0Y) grad f (IoY)grad y 0 (9)

D'ailleurs, les produits vectoriels (Z0 Y) grad 9 X grad 9 et

K Y) grad 9 X grad 9 sont aussi orthogonaux, puisqu'ils sont

respectivement parallèles à l'0et l0.

Nous avons donc

I (70 Y) grad <j> X grad q> J j (70 Y) grad X grad j 0

OU

j (IV) grad f (7oY) grad fJ (grad y)2 —

— | (70 Y) grad fgrad j \ Y) grad grad j 0

ce qui, en égard à (9), peut s'écrire:

j C'ograd• grad f \ j Co^grad • grad I 0 •

En d'autres termes, l'un des vecteurs Y grad 9, (7^ Y) grad 9
est normal à grad 9. En conséquence, l'une des directions
principales est parallèle à la tangente de la courbe 9 0,

grad 9 j G qui passe par ce point.
Nous obtenons ainsi le théorème suivant:

Pour que les dérivées de grad 9 par rapport aux directions

principales à chaque point de la surface 9 0 soient en grandeur
et en direction les demi-axes de Vellipse des dérivées de ce vecteur

par rapport aux directions du plan tangent à ce point de la
il faut et il suffit que les courbes 9=0, |grad 91 G soient des

lignes de courbure de la surface 9 0.
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