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SUR LA SERIE DE TAYLOR D’'UNE FONCTION
HOLOMORPHE

PAR

T. AxgueLuTzA (Cluj, Roumanie).

Cette Note a pour objet la série de Taylor d’une fonction
holomorphe considérée comme un développement d’apres les
fonctions fondamentales d’un noyau symétrique généralisé.

Dans une note antérieure ! j’ai considéré le noyau symétrique
généralisé. C’est un noyau N (z, y) pour lequel on a l'identité

N(x,y) = Ny, z) .

N barré désigne le conjugué imaginaire de N. Nous avons
montré que si ¢ (z) est une solution de I’équation

b
o) — % [(Nz.s)o(s)ds = 0,
a

¢ (z) est une solution de I’équation associée. _
Par suite le systeme de solutions fondamentales, que I’on peut
supposer normale, est de la forme

]

-

o () e (@) s s 9, (@), . (1)
o (@), 5al@) s 9, (@) (2)

Puis toute fonction f(x) donnée par I’égalité

b

f(x) — /‘N(x, .s) h (\) ds ,

1 Comples rendus, t. 186, 1928, p. 559.
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peut étre développée en série d’apres les fonctlons de la suite

(1) ou (2).

Ceci étant rappelé, considérons le noyau symétrique généralisé'

_ i
N, ) = o o

9= b o
21 " pets

Le paramétre r est positif et 1nfer1eur a 'unité; 0 et ¢ varlent
dans lintervalle (0, 2r).
N, (0, ¢) étant e premier noyau itéré de N ( ©) on-a-

2 . | p
cT z6 lw 1]

. 1 ‘ e e 1 e
N, (0, o) = f - — — —dw = ———— .
2( ! .) b2 ‘ e;e — et etv — pe®® 2% ezﬂ — 2%

Pour I'itéré d’ordre n — 1 .on trouve,

. ! 1 , ei9
Nn (6. 9) = P ERT n_to
e —r e’

Le'noyau résolvant 9T (9, ¢, 1) du noyau N (6, o) est donné
par la formule connue |

B, 9:2) = N(0.9) + AN (8. ¢) + oo + VN, (0, 9) + ... .

Par suite on a pour le noyau résolvant

A\ 0

1 wﬂ e :
. 02 —5_2 el

Cette formule peut s’écrire

n  nije—b)

1 Qr'e
6, ;)» == e— ——————
IO 23 %) 2ﬁ21—.1r”
n==0
car on a supposé -
0<r<t.

De la valeur du noyau résolvant on peut déduire la fonction

entiére D (3) dont les racines sont les valeurs caractéristiques
du noyau N (z, y). Pour cela remplagant dans la formule

— fm(w o3 Ndo,
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le noyau résolvant par sa valeur, on trouve

D’ (%) 1 r r't
DY) T T1—5, "7+ 1_)\,0”_{_ o

En intégrant on en déduit

D) = (I — X1 —rk) ... (L—r"%..
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Le systéme normal de solutions fondamentales est donc

formé par les deux suites

1 e et
Vam Yoz Vor ’
1 ez'() enﬂ}
V2= Vo= ’ \/37_:
Par suite pour la fonction
25 .
o) = o [ty

on a le développement en série

iz a”‘ nis
T — e 7 4+ ...

flo) = —20o 4+ 1o
’\/Zﬂ \/27: \/'27:

les @, étant donnés par la formule

)

-7

a, = —— /10_/1i"’ flo)do .

En tenant compte de l’expression de f(p) cette formule

devient

ou l'on a posé
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Considérons une -fonction. f(z) holomorphe dans un -cercle
~(C) de rayon un. La série (3) de cette fonction est la série de
Taylor. On le voit facilement utilisant l'intégrale de Cauchy.

Pour donner une application, considérons deux fonctions f(x)
et ¢(x), '

© , o

n=y9 n=yq"

holomorphes dans le cercle (C). Les deux séries étant des déve-
loppements d’aprés les fonctions de la suite (1) et ayant
z = re® ,

on trouve la formule-

' 2z x
| E%:c[[/'(x) $(2) + fla)o(x)]d = 2 o a"). ’

n=u\

qui est une généralisation de celle donnée par GurzMmER L.
Les mémes considérations conduisent aussi & la série de
Taylor de deux variables.

1 GuTzMER, Ein Satz iber Potenzreihen. Math. Annalen, t. 32, p. 596, 1888.
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