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..... non

20

?

II1. — S8i Pon suppose les variables aléatoires x, v, z
négatives, pour leur. mdependance il faut et il suﬁit que Dégalité

suwante: |
1" ool = &™)y - 1421 -

soit remplie pour m, n, p, ... aussi grands que l'on veut.
n’ont pas & prendre toutes les

Donc dans ce cas m, n, p, ...
valeurs entiéres, mais ils peuvent faire partie de n’tmporte quelle

?
suite de valeurs réelles (entiéres ou non) indéfiniment croissantes

2. — DEMONSTRATIONS.

Nous nous bornerons & démontrer les théoréemes dans le cas
La démonstration dans le cas

de deux variables aléatoires.
d’un nombre plus grand se fait absolument de la méme maniere

et ne présenté aucune difficulté nouvelle
Démonstration du théoréme 1. — Appelons

p;, la probabilité de I’égalité x =
4 > y=4h (

, »
r (k, 1) la probabilité pour que ’on ait en méme temps z = a,

ety = b .
- Supposons que les a, sont tous différents, ainsi que les b,.
Posons . | o
: ek, ) =r(k, l) —pra; . '

indépendance de z et de y s’exprime par le systeme d’éga-

1=1,2..n (2

lités | |
‘ e(/f,l)=0‘. (/-':::1. 2, RS 1 A

Pour toute valeur de s et de ¢ on a évidemment les identités

suivantes:
(3)

=1

] = Epk“k ’ 4“3/ | = 294”1 '

k=1

En particulier:
uyu—zqt—i SO

onl] == El’k — 1 )
i=1

k=1
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On a de méme:

2"yl = E ir(/.‘, l)a b} =

=1 k=1

n nm

=SSNk )+ pglagrt =

- 2 e(k, Dag by + 2yl - (5)

Iyl =11l 2"yl = ll=’l] - (6)

Si I'on rapproche les conditions (1) des identités (5) et (6),
on trouve que le probléme se rameéne a étudier ’équivalence du
systéeme (2) au systéme d’équations linéaires suivant:

n m .
EEE("JMZ/)E:O . (

(=1 k=1

(s =0.1,2. .. m—1; t =0,1,2, .. n—1)

~a
N—

Il est bien évident que (2) entraine (7).
Pour prouver la réciproque, posons:

m

2(l.s) :25(/;, . (8)

h=1
Le systeme (7) prend alors la forme:
El)jz(z, s) = 0 . (t = 0,1, .t — 1) (9)
(=1

Pour un s fixe, le systeme (9) peut étre envisagé comme un
systeme d’équations linéaires & n inconnues:

z(1, s) , 2(2, 8) . .. z(n — 1, s), z(n, s) .

Le déterminant de ce systéme est évidemment le déterminant
de Vandermonde égal a

1] o=

h1
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- Les b, etant tous différents, ce déterminant est manifestement
dlf’ferent de zéro. Par conséquent on déduit de (9)

z(l, s) =0 . (=12 ..n; s=01, ...m—1) (10)

En rapprochant ceci de la définition (8), on est amené au
systeme d’équations en ¢(k, ): ' |

m

25(/;, a;, = 0 . (s = 0. 1,A... m— 1)  (11) |

k=1 -~

Le déterminant de ce systéme est encore un déterminant de
Vandermonde représenté cette fois par

II (@, — a,)
h£i

et, par conséquent, différent de zéro. On a donc pour ‘toute
valeur de £ et de [:

ek, ) =0 . c.q.f.d.
Démonstration du théoréme II. — Soient respectivement
a - b b a
[r@dzs  [emdy e [ [d. ydedy

les probabilités des iriégalités: :

x<a’, Y b

lIA

et du systéme de deux inégalités simultanées:
r<a ety < b . |
Ils aglt d’etabhr l’equwalence de I'égalité |
Yoo y) = fl@ely) L)
et du systéme': |

+» 4+

"’f dx fy y) dy = f fx"l "Y(z, y)dzdy . ~(13)

-0 —30 K

C(m=0,1.2,3,...; n = 0,1, 2, 3, )




VARIABLES ALEATOIRES 23

Pour m, n = 0 I’équation (13) est une tautologie.
Le passage de (12) & (13) est immeédiat. Il ne s’agit donc que
du passage inverse. Pour 'effectuer, posons:

. y) =Y. y) — (@) 2(y) - (1%)
L’équation (13) revét alors la forme suivante

+x 4o +x -

f /’;lfm y'e(v, y)de dy = /.y” dy t/ﬂ;v'”s(x, y)de = 0 .

En appliquant le théoréme des moments® & la fonction
swivante de y:

on trouve, quel que soit y:

-+ oc

/.x'”s(x, y)de = 0, (m =0 1,2 3, ..)

—C

Ce qui nous donne, par une nouvelle application du théoréme

des moments:
(e, y) =0 c.q.f.d.

Démonstration du théoréeme I1I. — Lemme I (fondamental).
Soit A(x) une fonction continue croissante (au sens Strict) et non
négative dans Uintervalle (a, b) et soit f(x) une fonction continue
dans cet intervalle. Nous affirmons que U'égalité

(MA@ f(2)de = 0 (15)

a

supposée remplie pour n ausst grand que ['on veut, entraine
comime conséquence:

flz) = 0 pour a

A
S
[IA

(16)

1 A savoir que toute fonction continue & moments tous nuls est forcément égale &
Z(ro.
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Démonstration. Supposons, par impossible, que 1’équation (16)
n’ait pas lieu pour tous les points de l'intervalle (a, b). Nous
distinguerons deux cas: 1° f(b) = 0, 20 f(b) = 0.
Commengons par montrer 'impossibilité du cas 20. Dans ce
cas il est possible de déterminer les points ¢ et d tels que Lon ait:
flx) = 0 pour c< xS b
flx) % 0 pour - d<lzx<c ;
la fonction f(x) garde le signe constant dans (d, c) Sans res-
treindre la généralité, nous pouvons supposer que ce signe est

positif [dans le cas contraire nous aurions pris. — f(x) au lieu

de f(z)]. Soit « le point ou f(x) atteint son maximum relatif
a (d, ¢). Posons |
f(d.) = 2¢ .

Il existe alors un intervalle (g, &) tel, que Pon ait :
[le) 2ze pour gz h. (17)
En rapprochant les formules (15) et (17), en posant

B,(z) = [A@)]"f(a)

on tro uve

f dx—i—fB dx+[8n dx+f3 (18)

a

| Puisque les-quantités

‘/‘g B, (x) dx et ‘/an (z)dz
d

sont positives, on peut écrire:
d . h
[ B@)de + [B,@)dz <0 . (19)

a g

1.0n a évidemment: ‘ ,
' aL£d<g<a<h<c<b.
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On a évidemment

h n

Bn z) de = /"[A ' f(2)dz > ,/” 2)]" dz > <[A(g)])" (h —g) -

En désignant par M le maximum absolu de f(z) !, on a:

|
f&x>ﬂ=

La

()] f(x)dz| < M.[A(d)]*(d — «a) . (21)

En rapprochant les inégalités (19), (20) et (21), on trouve

[A()) (h — g) < M [AD)]"(d — a) ,

R IR, &

Puisque, par hypothese, on a

c’est-a-dire

Ag) Sy

d< g, et. par suite Ad)

le premier membre de 'inégalité (22) tend vers I'infini avec n,
tandis que le second membre reste constant, ce qui est manifeste-
ment absurde. Notre démonstration de I’absurdité de I’hypothese
20 est ainsi achevée. En ce qui concerne ’absurdité de 1’hypo-
these 10, elle est encore plus manifeste. Pour I’établir on n’a
qu’a reprendre le raisonnement de tout & I’heure en y 1ntr0—
duisant quelques simplifications.

Il suffit de supposer la non-existence du point ¢ et de 1’égalité
h = c.

Lemme II (analogue au théoréme des moments). — Toute

fonction continue f (x), remplissant pour n ausst grand que on
veut, l’équation des moments

+oo _
2" flx)dz = 0 (23)
0

est nulle identiqguement.

1 C’est-a-dire le maximum relatif & (a, b) tout entier.
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Remarque. — Pour éviter le malentendu possible nous rappe-
lons encore une fois que n parcourt une suite indéfiniment
croissante de quantités réelles, positives, d’ailleurs absolument
quelconque. |

Démonstration. Posons z = tang z.
L’équation (23) devient alors

)
|
|

? n f(tang z) _
(tang z) “cos?z dz = 0,

=0

Appliquant le lemme I aux fonctions: 't'an'g z (fonction crois-

(tan

sante) et /c<)s_2gzZ) (fonction continue), on trouve

/

fl@) =0 c.q.f.d.

Pour démontrer le théoréme III nous n’avons qu’a répéter
la démonstration du théoreme II. Les seuls changements a y
" introduire sont le remplacement de la suite de tous les nombres
naturels par une suite croissante réelle arbitrairement donnée
et la mise du lemme IT & la place du théoréme des moments.

Varsovie, 25 mai 1929.
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