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VARIABLES A 19

1. Enoncés des théorèmes.

Je prouve notamment les théorèmes suivants:

I — Soitx, y, z, des variables aléatoires prenant respectivement

m, n. p, valeurs distinctes. Dans ces conditions pour
Vindépendance de ce système de il faut et il suffit que
Von ait:

W^y'z11H lk?||. ||y'||. \\z"\\ (1)

pour
.s* 0, 1 m — 1 ; t 0. 1, a — 1 ; 0, 1. — l ;

x [I désigne ici V espérancemathématique de la valuable aléatoire x.
Dans le cas de deux variables aléatoires seulement l'équation (1)

pour s — 0 et t quelconque (ainsi que évidemment pour t — 0

et 5 quelconque) est une tautologie Dans le cas de trois variables
les équations du système (1), correspondant respectivement à

5 — 0, t0, u — 0 expriment l'indépendance des variables
x, y, s deux à deux.

Notre énoncé met ainsi bien en relief la différence de la notion
de l'indépendance des variables aléatoires deux à deux et leur
indépendance tout court.

II. — Si l'on supprime la restriction relative au nombre de

valeurs, que prennent x, y, z, on retombe sur le théorème
connu 1: pour qu'ait lieu V indépendanced'un système des variables
aléatoires x, y, z, il faut eiilsuffit que

l|s'Vz'...|| \\É-\\sp\\•••

pour toutes les valeurs entières positives ou nulles de m, n, p.
Remarque. — Les lois de probabilité attachées aux variables

x, y, z, doivent être ici supposées absolument continues, sans
quoi la définition classique de l'indépendance par l'application
du théorème sur la multiplication des probabilités deviendrait
inutilisable.

i Ce théorème peut-être n'a pas été énoncé explicitement, mais il est un corollaire à
peu près immédiat du théorème classique des moments.
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III. — Si Vonsuppose les variables aléatoires x, y, z, non
négatives, pour leur indépendance il faut et il suffit, que
suivante :

11^^.^11 11^11.11^11.11^11...

soit remplie pour m, n, p, aussigrands que Von veut.
Donc dans ce cas m,n,p, n'ont pas à prendre toutes les

valeurs entières, mais ils peuvent faire partie quelle
suite de valeurs réelles (entières ou non) indéfiniment croissantes.

2. — Démonstrations.

Nous nous bornerons à démontrer les théorèmes dans le cas
de deux variables aléatoires. La démonstration dans le cas

d'un nombre plus grand se fait absolument de la même manière
et ne présente aucune difficulté nouvelle.

Démonstration du théorème I. — Appelons

pk la probabilité de l'égalité x— ak 1, 2, m)

ql » » » y'1,2, n)

r (k, l) la probabilité pour que l'on ait en même temps x ak

et y bt.
Supposons que les ak sont tous différents, ainsi que les bv

Posons
z[k l) r [k l)

L'indépendance de xet de ys'exprime par le système d'égalités

e(*f l)0 '
(/.* 1. 2, m ; 'J, 2, n) (2)

Pour toute valeur de s et de on a évidemment les identités
suivantes :

m n

ii^H 2^*b* • .U/H 2^ • (3)

k= i i

En particulier:
m n

• N°!i 2^ 1 • l,2/°1! 2^= 1
• (4)
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