Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 29 (1930)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE.

Artikel: SUR L'INDÉPENDANCE DES VARIABLES ALÉATOIRES

Autor: Kantorowicz, I.

Kapitel: 1. Enoncés des théorèmes.

DOI: https://doi.org/10.5169/seals-23247

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

1. Enoncés des théorèmes.

Je prouve notamment les théorèmes suivants:

I — Soit x, y, z, ... des variables aléatoires prenant respectivement m, n, p, ... valeurs distinctes. Dans ces conditions pour l'indépendance de ce système de variables, il faut et il suffit que l'on ait:

$$||x^{s}y^{t}z^{u}...|| = ||x^{s}||.||y^{t}||.||z^{u}||...$$
(1)

pour

$$s = 0, 1 \dots m-1$$
; $t = 0, 1, \dots n-1$; $u = 0, 1, \dots p-1$;

 $\|\mathbf{x}\|$ désigne ici l'espérance mathématique de la variable aléatoire \mathbf{x} .

Dans le cas de deux variables aléatoires seulement l'équation (1) pour s = 0 et t quelconque (ainsi que évidemment pour t = 0 et s quelconque) est une tautologie Dans le cas de trois variables les équations du système (1), correspondant respectivement à s = 0, t = 0, u = 0 expriment l'indépendance des variables x, y, z deux à deux.

Notre énoncé met ainsi bien en relief la différence de la notion de l'indépendance des variables aléatoires deux à deux et leur indépendance tout court.

II. — Si l'on supprime la restriction relative au nombre de valeurs, que prennent x, y, z, ... on retombe sur le théorème connu ¹: pour qu'ait lieu l'indépendance d'un système des variables aléatoires x, y, z, ... il faut et il suffit que l'on ait:

$$||x^m y^n z^p \dots || = ||x^m|| \cdot ||y^n|| \cdot ||z^p|| \dots$$

pour toutes les valeurs entières positives ou nulles de m, n, p. ... Remarque. — Les lois de probabilité attachées aux variables x, y, z, ... doivent être ici supposées absolument continues, sans quoi la définition classique de l'indépendance par l'application du théorème sur la multiplication des probabilités deviendrait inutilisable.

¹ Ce théorème peut-être n'a pas été énoncé explicitement, mais il est un corollaire à peu près immédiat du théorème classique des moments.

III. — Si l'on suppose les variables aléatoires x, y, z, non négatives, pour leur indépendance il faut et il suffit, que l'égalité suivante:

$$||x^m y^n z^p \dots || = ||x^m|| \cdot ||y^n|| \cdot ||z^p|| \dots$$

soit remplie pour m, n, p, ... aussi grands que l'on veut.

Donc dans ce cas m, n, p, ... n'ont pas à prendre toutes les valeurs entières, mais ils peuvent faire partie de n'importe quelle suite de valeurs réelles (entières ou non) indéfiniment croissantes.

2. — Démonstrations.

Nous nous bornerons à démontrer les théorèmes dans le cas de deux variables aléatoires. La démonstration dans le cas d'un nombre plus grand se fait absolument de la même manière et ne présente aucune difficulté nouvelle.

Démonstration du théorème I. — Appelons

$$p_k$$
 la probabilité de l'égalité $x=a_k \ (k=1,2,\dots m)$ q_l » » $y=b_l \ (l=1,2,\dots n)$

 $r\left(k,\,l\right)$ la probabilité pour que l'on ait en même temps $x=a_k$ et $y=b_l$.

Supposons que les a_k sont tous différents, ainsi que les b_l . Posons

$$\varepsilon(k, l) = r(k, l) - p_k q_l.$$

L'indépendance de x et de y s'exprime par le système d'égalités

$$\varepsilon(k, l) = 0$$
. $(k = 1, 2, ..., m; l = 1, 2, ..., n)$ (2)

Pour toute valeur de s et de t on a évidemment les identités suivantes:

$$||x^{s}|| = \sum_{k=1}^{m} p_{k} a_{k}^{s} , \quad ||y^{t}|| = \sum_{l=1}^{n} q_{l} b_{l}^{t} .$$
 (3)

En particulier:

$$||x^{0}|| = \sum_{k=1}^{m} p_{k} = 1$$
, $||y^{0}|| = \sum_{l=1}^{n} q_{l} = 1$. (4)