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VARIABLES ALEATOIRES 19

1. ENONCES DES THEOREMES.

Je prouve notamment les théoremes suivants:

I — Sott x, v, z, ... des variables aléatotres prenant respective-
ment m, n, p, ... valeurs distinctes. Dans ces conditions pour
I'indépendance de ce systéme de variables, il faut et il suffit que
l'on ait:

2y s = N2y = (1)
pour

s=01..m—1: ¢t=01..n—1: w=01..p—1;
HX H désigne ict 'espérance mathématique de la variable aléatoire x.

Dans le cas de deux variables aléatoires seulement I'équation (1)
pour s == 0 et ¢ quelconque (ainsi que évidemment pour ¢ = 0
et s quelconque) est une tautologie Dans le cas de trois variables
les équations du systeme (1), correspondant respectivement a
s =0, t=0, u=0 expriment l'indépendance des variables
x, Yy, 3 deux a deux.

Notre énoncé met ainsi bien en relief la différence de la notion
de I'indépendance des variables aléatoires deur d deux et leur
indépendance tout court.

II. — S1 'on supprime la restriction relative au nombre de
valeurs, que prennent z, y, 3, ... on retombe sur le théoréme
connu *: pour qu’ait liew I'indépendance d’'un systéme des variables
aléatoires X, y, z, ... il faut ei il suffit que U'on ait:

R I TN P EI

pour toutes les valeurs entieres positives ou nulles de m, n, p. ...

Remarque. — Les lois de probabilité attachées aux variables
xZ, Y, 5, ... doivent étre ici supposées absolument continues, sans
quoi la définition classique de I'indépendance par I'application
du théoréme sur la multiplication des probabilités deviendrait
inutilisable.

L Ce théoreme peut-étre n'a pas été énoncé explicitement, mais il est un corollaire &
peu pres immeédiat du théoréme classique des moments.
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II1. — S8i Pon suppose les variables aléatoires x, v, z
négatives, pour leur. mdependance il faut et il suﬁit que Dégalité

suwante: |
1" ool = &™)y - 1421 -

soit remplie pour m, n, p, ... aussi grands que l'on veut.
n’ont pas & prendre toutes les

Donc dans ce cas m, n, p, ...
valeurs entiéres, mais ils peuvent faire partie de n’tmporte quelle

?
suite de valeurs réelles (entiéres ou non) indéfiniment croissantes

2. — DEMONSTRATIONS.

Nous nous bornerons & démontrer les théoréemes dans le cas
La démonstration dans le cas

de deux variables aléatoires.
d’un nombre plus grand se fait absolument de la méme maniere

et ne présenté aucune difficulté nouvelle
Démonstration du théoréme 1. — Appelons

p;, la probabilité de I’égalité x =
4 > y=4h (

, »
r (k, 1) la probabilité pour que ’on ait en méme temps z = a,

ety = b .
- Supposons que les a, sont tous différents, ainsi que les b,.
Posons . | o
: ek, ) =r(k, l) —pra; . '

indépendance de z et de y s’exprime par le systeme d’éga-

1=1,2..n (2

lités | |
‘ e(/f,l)=0‘. (/-':::1. 2, RS 1 A

Pour toute valeur de s et de ¢ on a évidemment les identités

suivantes:
(3)

=1

] = Epk“k ’ 4“3/ | = 294”1 '

k=1

En particulier:
uyu—zqt—i SO

onl] == El’k — 1 )
i=1

k=1
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