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cubique ou une autre. Ces transformations mettront en évidence de
nombreuses propriétés métriques nouvelles.

Par exemple, la cubique admettant la paire des points cycliques
pour conique apolaire aura pour hessienne le lieu des foyers des
coniques inscrites et pour cayleyenne I’enveloppe des axes des coniques
inscrites. Cette cayleyenne, courbe de troisiéme classe, touchera en
particulier les douze bissectrices du quadrilatére, la droite de I'infini
et la droite de Newton. Par la considération de cette cubique et de
son systéme polaire, on sera conduit aux propriétés des foyers des
coniques inscrites, du point de Miquel et a toutes les propriétés du
quadrilatére qui ressortent de la considération de ses bissectrices.

- PROBLEME DE CALCUL DIFFERENTIEL
ET INTEGRAL DONNE A L’AGREGATION EN 1929

SOLUTION
DE
M. Henri Mirroux (Strasbourg).

1. Sotent Oxyz un triedre trirectangle de sens direct, p et q les dérivées
partielles de z par rapport a x et v, prises sur une surface S. Former
Péquation aux dérivées partielles E qui doit éire vérifiée sur S pour que,
I’ étant Uintersection de S avec une sphére = de centre O et de rayon quel-
conque v, S et 3 se coupent le long de T' sous un angle constant V. La
valeur de V pourra dépendre de v; on posera cos V.= 1 (r), f (v) étant une
fonction donnée.

I1. Former le systéme différentiel @ définissant les multiplicités carac-
téristiques de K. Pour intégrer @, il peut étre commode d’utiliser les
coordonnées pluckériennes de la normale & S. On trouvera ainsi que
toute courbe caractéristique C de E est située dans un plan P passant
par O. Sous quel angle P coupe-t-il la développable caractéristique conte-
nant C ? |

I11. Soient OZ un axe normal & P, et cos « cos (3, cos o sin (3, sin «, ses
cosinus directeurs ; sotent OY un aze de cosinus directeurs — sin (3, cos (3,
0, et OX un aze tel que le triedre OXYZ soit trirectangle et de sens
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dirfzct. Indiquer les formules ¥ qui expriment les coordonnées x,y, z d’un
point M de C en fonction de a, f3 et des coordonnées polaires r et ¢ de M
dans le plan P, relativement a I’ azxe polazre oXxX (0Y ayant alors pour.'

T
equatwn ?=3)

On peut representer les cosinus dzrecteurs de la normale ¢ S en M par
des formules N qu’on déduit de F en remplagant r par 1 et ¢ par un nou-
vel angle W. Quelle relation y a-t-il entre ¢, ¥, V ?

LelongdeC,ona9 = o + y, » étant deﬁnz en fonction der par une
. quadrature a ltmzte inférieure r, fixée une fois pour toutes, et y étant une
constante arbitraire. Vérifier que, les courbes C sont toutes congruentes
cnire elles.

IV. Quelle relation différentielle £, doit-on établir entre les paramétres
o, B, y des courbes C pour que ces courbes engendrent une surface inté-
grale S ? Quelle relation f, doit-on établir entre «, ¢ et les différentielles
de a et [3 pour que le systéme (F, fl, f,) represente une courbe intégrale
de Uéquation de Monge G associée & B Former Uéquation G; U'interpréter”
géométriquement ; en déduire un mode de génération des surfaces S.

. Quelle relation faut-il établir entre 3 et y pour que S soit de révolution
autour d’un axe passant par O ? Former I'équation différentielle du troi-
siéme ordre a laguelle satisfait alors  comme fonction de (3.

V. Calculer Uélément linéaire d’une surface S rapportée aux courbes
w = Ct et 3 = Cte; quelles relations faut-il établir entre «, 3, y pour que
cet élément soit de la forme

ds® = f, () do? + fy(w) o () d5*?

Que sont alors les surfaces S ?

V1. Les vartables indépendantes étant toujours o et (3, construire la
seconde forme différentielle quadratique de S en utilisant les formules F
et N.

Quelles sont les lignes de courbure de S, les valeurs des rayons de
courbure principaux et les surfaces S pour lesquelles ces rayons de cour-
bure sont fonctions U'un de I'autre ?

Calculer le rayon de courbure, la courbure géodésique et la torsion des
courbes T' (11° I) situées sur S.

VII. On supposera désormais f (r) = r; dans cette hypothése, déter-
miner les deux surfaces, symétrigues par rapport au plan z = O qui
passent par la courbe : '

z2 =20, 22 —h(x? + )+ b+ )2 =0.
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(On représentera Uune, S, de ces surfaces, au moyen de w et v; on ne
veérifiera pas que les deux surfaces sont distinctes.)

Construire les courbes représentatives dans le plan (w, y) des asym-
ptotiques de S,. Ces courbes ont une infinité de points singuliers dont on
indiquera les points d’accumulation.

I. — La formation de I’équation (E) est immédiate. Cette équation
-est:
(pr + qz —2)* —r*f*(1 + p* + ¢°) = 0. (E)
II. — Systéme différentiel définissant les multiplicités caractéris-
tiques de (E):
dz dy dz — dp — dg

= = = 35— g (1)
.avec:

TP =a(pz 4+ qy —z) —r*[*p,

1

5 Q=vypr + qy — z) —r*f*q ,

(D}
&

5 (P + Qq) = (pz + qy) (pr + qy — 2) — (p* + ¢*)°/
= z(px + qy —z) + r2f*,*

1

g (X +pZ) = — (L + p*+ PO+ rf) (& + p3) ,
1

g (Y +9Z) = — (L+p* + @) f(F+ 1f)(y + q2) .

Formons les rapports égaux aux rapports (1), et dont les numérateurs
-sont respectivement d (x 4 pz) et d (y + ¢z). Les dénominateurs de
ces rapports sont proportionnels respectivement a: (x 4+ pz) et
(y + ¢z). D’ou l'intégrale premiére:

Afx + pz) + By + ¢qz) = 0 .
D’aprés les deux derniers rapports (1), on a:

Adp + Bdg = 0
-d’out
Ap+Bq—C_—_0, (2)
équation qui simplifie l’intégrale premiere obtenue et donne 1’équa-
“tion:
Az + By + Cz = 0 . (3)

1 En vertu de I’équation (E).
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L’équation (3) montre que les caractéristiques sont situées dans des:
plans P passant par l’origine; étant donnée une surface intégrale (S)
de I’équation (E), contenant une caractéristique (C), la normale & (S)
le long de (C) est située, d’aprés I’équation (2), dans le plan de la
caractéristique: c¢’est la normale proprement dite & la caractéristique.
Elle fait I’angle V avec le rayon vecteur OM, et cette derniére propriété-
détermine la caractéristique dans son plan (4 une rotation preés) 1.

Le plan tangent a la surface (S) le long de (C) enveloppe un cylindre,
qui coupe & angle droit le plan P de la caractéristique (C).

I1I. — L’axe OZ étant normal au plan P, nous prendrons:
A = cos a cos B , B = cos asinf , C = sin a .

Tableau des cosinus directeurs des axes OXYZ:

— e ‘—ﬁ

! . Ox Oy Oz
0X sin & cos sin & sin 8 — COS o
oY — sin @ cos 3 0
OZ cos a cos cos a sin _sin o

Soit un vecteur de mesure algébrique r, porté par une droite D
orientée, située dans le plan XOY, et dont la direction est définie par:

(OX, D) = 9 .

Les projections xyz du vecteur sur les anciens axes sont données
par les formules: '

[ x = r(cos ¢ cos f sin o — sin’p sin f§) ,
y = r(cos ¢ sin § sin « - sin ¢ cos ) , (F)
z = r(— cos o cos a) .

Elles sont applicables aux anciennes coordonnées d’un point M
du plan XOY, défini dans ce plan par ses coordonnées polaires 7 et o.

<

1 La normale & la surface (S) le long de (C) engendre une surface développable (plan).
Les caractéristiques, sur (S), sont donc des lignes de courbure. La famille de courbes
orthogonales aux caractéristiques sont orthogonales aux plans des caractéristiques, en
vertu de la position particuliére de la normale a (S). Ce sont donc les courbes sphériques
I, qui constituent la deuxiéme famille de lignes de courbure sur (S). Ce résultat est
aussi une conséquence du théoréme de Joachimsthal: I' est une ligne de courbure de la.
sphére £, donc de la surface S, ces deux surfaces se coupant sous le méme angle le long
de I, : '




AGREGATION DE MATHEMATIQUES (1929) 297

Soit MN la normale a la surface. Elle est aussi normale & la carac-
téristique. Orientons-la dans le sens habituel (sens de la concavite
de la caractéristique) et désignons par  I'angle:

§ = (OX, MN) .

Les cosinus directeurs de MN sont alors (application des formules
F):

g A = cos ¢ cos B sin & — sin ¢ sin §,
! = cos ¢ sin B sin o + sin ¢ cos |
\/v:—cosq)cosa.

Précisons la définition de I’énoncé, de ’angle V, en la donnant sous

la forme algébrique:
(OM, MN) = V .

On a alors la relation:

-C~

=9 + V 4+ 24t=% .

Le long de (C), on a la relation bien connue:

do
cotg V = r—— ,
8 dr
d’otlt:
,

cotg V
c?:f : di‘—f—\":u)‘{—-*{.

r

7o

Dans cette formule, - est une constante arbitraire. Rappelons que
cos V est égal a f (7).

On constate & nouveau que toutes les courbes (C) sont congruentes
entre elles.

IV. — Les caractéristiques (C) dépendent des trois constantes
arbitraires «, (3, 7. Si I'on fixe une dépendance entre un paramétre,
et chacune de ces trois constantes, les courbes (C) engendrent une
surface. Cette surface est une surface intégrale si un déplacement
élémentaire quelconque, en un point M d’une courbe (C), est normal
a la droite MN.

Donnons & a3y des accroissements dx df3 dy et & r un accroissement
dr. zyz subissent des accroissements Jx, dy, dz. L.’équation:

AMx + udy + viz = 0
donne, aprés simplification, la relation différentielle:

sinadf + dy = 0 . (/1)
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Les courbes intégrales peuvent s’obtenir en recherchant, sur une
surface intégrale (S) quelconque, ’enveloppe des caracterlsthues
-En désignant par dz dy dz les projections d’un déplaceiment élémen-
taire sur une courbe lntegrale on a done les relations:
dc. _dy  dz |
or - dy 0z :

or or or

D’ailleurs:

0
da:=——d —I——dat—}-M3 B—I—%dy

= 6—"? dr + r(cos pda — sin o cos adp) cos a cos B
en vertu de la relation f,. De méme:

dy = %—%dr + r(cos pda — sinq; cos adf}) cosa sinf3

dgs — Fl—dr + r(cos pda — sino cos adf) sina

et toute courbe intégrale satisfait a la relation:

- cos pdo — sing cosadfl = 0 (f)

de méme qu’aux relatlons F,fietala formule définissant qo en fonction
de r.

Remargque. — L’enveloppe des caractéristiques se trouve nécessaire-
ment sur le cone (r) enveloppe des plans des caracterlsthues La
relation f, s’obtient aussi en utilisant cette remarque. ’

En tout point M de l’espace passent une infinité de surfaces inté-
grales, dont les plans tangents enveloppent un cone C (M); dans le cas
de I’équation (E), ce cone est évidemment le cdne de révolution autour

de OM, le demi-angle au sommet étant g——— V. Rappelons que les

courbes intégrales sont les courbes les plus générales tangentes en
chacun de leurs points M au cdne C (M). Les caractéristiques sont ici
les courbes planes satisfaisant & cette condition, et les courbes inté-
grales sont les courbes gauches. On peut, donc les définir aussi comme

les courbes gauches les plus générales faisant I’angle 1:——— V avec le :

1 Il est entendu que xyz sont fonctlons de r directerhent et par I'intermédiaire de ?
0% bc

Il seralt plus correct d’écrire 101 aux dénominateurs: b—x + — M >F’

"¥e
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rayon vecteur. L’équation différentielle a laquelle elles satisfont est
une conséquence immédiate de cette propriété.

En chaque point d’une courbe intégrale passe une caractéristique,
et une seule, tangente & cette courbe. On peut considérer une surface
intégrale S comme engendrée par la famille de caractéristiques
correspondant a une courbe intégrale quelconque.

Autre mode de génération des surfaces S. — Les caractéristiques
étant des courbes planes congruentes entre elles, il est possible d’engen-
drer la surface S par simple déplacement du plan d’une caractéristique.
Le point O est invariablement lié & la caractéristique, dans ce déplace-
ment; d’out suite de rotations instantanées, les axes de ces rotations
passant par O. Le lieu d’un point M de la caractéristique, dans le
déplacement, est une courbe sphérique; c’est donc une courbe T,
normale en chacun de ses points au plan de la caractéristique qui y
passe; le lieu des axes de rotations instantanées est donc le cone (r)
enveloppe des plans des caractéristiques, et on obtient la surface S
en tracant une caractéristique dans un plan tangent a ce coOne, et
enroulant le plan autour du cone,.

Surfaces de révolution. — Pour qu’une surface S soit de révolution,
il faut et il suffit que le cone {r) se réduise & une droite, et ’axe de la
surface passe nécessairement par ’origine . La normale au plan P
etant orthogonale & une droite fixe, on a la relation:
m; cos o cos 3 4+ m, cosa sinfl + my sino = 0 .
La réciproque est évidente.

[’élimination des constantes m, m, m, conduit & 1’équation diffé-
rentielle:

d*(tg a)
ou:
d?a 49 si da\? . 9 0
cos o . 2 sin o | — sina cos®a = 0 .
ap ap) T

Nous conserverons sous cette forme 1’équation différentielle des
surfaces de révolution.

V. — L’élément linéaire est:

‘|2 2
ds? = r-2[ do + <cos cpjz— sin o cos oc) d(52]
8

cos?2 V

1 Ce fait résulte aussi des propriétés établies dans la note 2: les courbes sphériques I'
sont des lignes de courbure, donc les paralleles de la surface de révolution.
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Pour qu’il soit de la forme f,(w) dw? + f, () f5(B) 42, il faut et.
il suffit que 1’expression: |

U = cos goj—?;—.——sincp COS o

soit de la forme g, (») g, (3), et, par suite, satisfasse a ’équation aux
dérivées partielles
2U U U
— - =" —09.
dadf3 da df

Toutes réductions faites, on retombe sur I’équation différentielle
caractéristique des surfaces de révolution.

VI. — Seconde forme différentielle quadratique. — 11 est commode
de partir des formules suivantes:

D — gltdz
dwow .
DA dx dAdzx
2D = §(222% , 9A0%)
S(awap'*apom>
n o dNdx
B oB

Rappelons que Apv sont les cosinus directeurs de la normale a la
surface S. Leurs expressions ont été données au paragraphe III.
Toutes réductions faites, il vient:

/ _ av
. D= cos V<1 dw> ’
D’ 0,

C D" = r[—cosasin(@—-—V) -{—%%cos (?—V)][coscpg—%——singocosa] .

|

Les lignes de courbure sont les courbes (C) (d8 = 0) et T
(doo = dr = 0), résultat déja obtenu géométriquement (note 2).
Donnons les valeurs des rayons de courbure principaux:

E ' r
Blz—:, dV ’
cosV(l——-%—>
da sino cos a |
G r,coscpdp sin ¢ COs a
R2='57= " da

B

——cosqsiu(ap-——V) + = cos (¢ — V)
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. >R,
R, est fonction de w seul; R, est fonction de Ry lorsque o6 est

nul.
: . s :
Toutes réductions faites, on retombe, dans ce cas, sur ’équation
différentielle des surfaces de révolution.

Quelques caractéristiques des courbes I'. — Le calcul par les formules
de Frenet donne:

Courbure:

\/_— ‘ /da\?

cos” o -+ <d:>
rcos o da — sin o cos o.;
‘ tdb ‘

Torsion:

[}

. N
4+ s a cos- o

1ol

g

d* o : d o
COS % ——5 -+ = Sln .

J

}

r da . . 'da>3
rjy cosc -— SIN < COS 7 COS™ % T
td ' d

Courbure géodésique:

Y

(SN

| . do .
}Cosa cos (¢ — V) + 77 sin (¢ — V)
i b o
: da . |
7. cos ¢ —— — sing cos 2!
: dsg

On remarquera que la torsion est nulle dans le cas des surfaces de
révolution, et dans ce cas seulement: les courbes I' ne sont planes
(cercles) que dans ce cas.

Les deux courbures de la courbe I' au point M sont susceptibles
d’une interprétation géométrique tres simple. .

Soit (P) le plan de la caractéristique (C) passant en M, A la géné-
ratrice du cone 7 située dans P, MN la normale en M a la surface S,
normale située dans le plan de la caractéristique, MT la tangente en
M & la caractéristique, MQ la perpendiculaire menée de M sur la droite
A. Les points N, T, Q sont situés sur A (le lecteur est prié de faire la
figure).

La normale & la surface S est tangente au cone (), qui constitue
I'une des nappes de la surface focale de S. L’autre nappe est la surface
engendrée par la développée de la caractéristique G, quand on enroule
le plan de cette caractéristique autour du cone =. L’un des rayons de
courbure principaux (R,) est donc MN. Le centre de courbure de la
courbe I' en M est la projection de N sur la normale principale a la
courbe I' en M (théoréme de Meusnier appliqué a la surface S); mais
la courbe I' est aussi située sur la sphere de centre O et de rayon OM.
Le méme centre de courbure est donc aussi la projection de O sur la
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méme droite. La comparaison de ces deux propriétés montre que le
centre de courbure de T" en M n’est autre que le point Q: |

La position du centre de courbure géodésique est déterminée par la
définition de ce pomt c¢’est le point T.

VII. — On suppose cos V égal & r. On en déduit:

do — 8 Va0 — _av .

r

o n’étant défini qu’a une constante additive prés, nous prendrons :

w = —1YV ,
d’ou
r — COs w ,

A Tintersection de la surface S et du plan 20y correspond, d’aprés
la troisiéme formule F, la relation:

cosg cosa = 0 ,
qui se décompose:

10 —cos oo = 0. —cos.x ne peut étre nul sur toute la surface (z serait.

constamment nul). — cos « n’étant nul que sur 'intersection, celle-ci
-est une caractéristique. -
20 —cos ¢ = 0.

Lorsque I’intersection est la courbe:
. x2-—4(x2 + y2)2 + 4(.7;2 + y2)3 — 0 ,

courbe distincte d’une caractéristique, on se trouve nécessairement
dans le deuxiéme cas. La comparaison de I’équation précédente et
de la premiére formule F (ou I'on a fait cos ¢ = O) montre que, lelong
de l’mtersectlon on a la relation:

sin? B = 4 sin®w cos?w
ou: , '
B = 2¢ew + kn . (e = 1)
Or: | L ‘
cos ¢ = cos(w + y) =

L’élimination de » entre ces deux derniéres équations conduit a la
relation qui lie 3 et v, relation vraie non seulement sur l'intersection
mals sur toute la surface S:

(3 = — 2 E"f + k’ﬁ
a est déterminé par la relation f;, qui §’écrit ici:

sin a4 =

to| @
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d’on les solutions:

€

o

T: + 24" w (S1)
b :
a:——%—{—?/e”ﬂ—}—n. (S,)

Apparemment, il existe 8 surfaces (S): 4 (S;) et 4 (S,). Nous allons
réduire & 2 au plus le nombre de ces surfaces.

Nous prenons w et -, comme paramétres sur une surface (5). Une
surface (S) quelconque est symétrique par rapport & I’origine (change-
ment de 5 eny + 7) et par rapport au plan xOz (changement de signe
simultané de o et ).

Laissant ¢ et &’ fixes, les surfaces S; et S, sont symétriques par
rapport au plan zOy, et aussi par rapport & I’axe Oz.

Le changement de signe de ¢ transforme une S5; en sa symétrique
par rapport a 'axe Oz, c’est-a-dire en une S,. Le changement de
parité de &’ produit la méme transformation.

En résumé, il n’existe que deux surfaces distinctes au plus, syme-
triques 'une de I'autre par rapport au plan zOy.

Nous choisirons pour surface S la surface S, déterminée par le
choix: e = + 1,k = k" = 0.

Asymplotiques de S. — Elles sont déterminées, toutes réductions
faites, par I’équation différentielle:

@ . + 3 . p o (5)
iy — & — 5 cos wsin (2w + ) sin (o + y) .

Cette équation reste invariante apres les transformations suivantes:

(w, o + =), (Y, vy + =), (w, — o) ; (v — )

(les deux derniéres transformations étant simultanées), ce qui permet
de se borner a I’étude des courbes intégrales situées dans le rectangle:

= w=0, 0 Y= ®

N

et, d’'une facon plus précise, dans la portion de ce rectangle ou le
second membre de I’équation (5) est réel; cette portion est le triangle
OAB dont les sommets ont pour coordonnées:

0(0,0) , A<-—-72:%> B<_g,x>.

Un calcul simple montre que le maximum de la valeur absolue du
deuxiéme membre de ’équation (5) est lli
£

Soit M un point intérieur au triangle OAB. En M passent deux
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courbes intégrales. Considérons, pour fixer les idées, celle dont le
coefficient angulaire J—Y— est, en M, positif, et étudions en premier lieu
) .

la partie de cette courbe correspondant & w croissant. ~

Le coefficient angulaire reste positif jusqu’a ce que la courbe
rencontre le cdté OB en un point M;. En M,, le coefficient angulaire
est infini; les deux déterminations du radical de I’équation (5) se
permutent et v devient une fonction décroissante de w, jusqu’a ce que
la courbe coupe le coté OA, ce qui arrive nécessairement, le coefficient

4
angulaire de la courbe étant, en valeur absolue, superleur a “ﬁ A
partir de ce deuxiéme point d’intersection, redevient une fonetion
croissante de », et ainsi de suite: la courbe admet une infinité de
points singuliers M; M, ... M,, ... situés alternativement sur OA et
OB, et dont les abcisses «» croissent avec n.
Ceci posé, deux hypothéses peuvent étre prévues a priori.
- A. — Les points M,, tendent vers O, seul point limite.

B. — Les abscisses des points M, tendent vers une quantité néga-
tive —e¢. Dans cette hypothése, tracons un cercle (C) complétement
intérieur (c’est-a-dire frontiére comprise) au triangle OAB, et dont le
centre a pour abscisse — ¢. Les deux faits suivants sont en contra-
diction manifeste: |

10 — Dans le cercle (C), le coefficient angulaire d’une portion quel-
conque de courbe intégrale est inférieur, en valeur absolue, a une
constante positive dépendant uniquement de la position du cercle
(cette constante est 'inverse du minimum, en valeur absolue, du
deuxiéme membre de I’équation (5) dans le cercle).

20 — 1 existe, a I'intérieur du cercle (C), une portion PQ de courbe
intégrale, les points P et Q pouvant étre pris aussi proches que I'on
veut des deux extrémités du diamétre du cercle (C), parallele & ’axe
Oy (le lecteur est prié de faire la figure). ' |

L’hypothése B est donc a rejeter.

Etudions maintenant la portion de courbe intégrale correspondant
a4 o décroissant & partir de M Pluswurs ‘hypothéses peuvent étre
prévues a priori:

A’. — Aprés un nombre fini d’mtersectlons avec les cotés OA et OB,
la courbe intégrale fouche le c6té AB en un point situé entre A et B
En ce point, les deux déterminations du radical se permutent et on
se retrouve dans le.cas A. |

A”. — Aprés un nombre fini de points d’intersection, la courbe
integrale touche le c6té AB en A ou B. Elle se complete alors par sa -
symétrique par rapport & A ou B.

B’. — La courbe 1ntegrale coupe les cotés OA et OB en une infinité
de_points P; P, ... P, d’absmsses décroissantes, tendant vers une

2

quantité supérieure & — . Un ralsonnement identique a celul de
Phypothése B permet de rejeter cette hypothese |
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C’'. — I’abscisse de P, tend vers — % Etudions ’allure de la courbe

aux environs du c¢6té AB. Bornons-nous a une portion A; B; de ce
¢Oté, de longueur suffisamment petite pour que la demi-circonférence
(C,) de diamétre A; By, intérieure au triangle OAB, n’ait pas de point
commun aux c¢dtés OA ou OB.

Dans cette demi-circonférence, le coefficient angulaire Zl'(_i n’est plus

limité supérieurement en valeur absolue, & cause du terme cos w,
nul sur A; B;. Mais on peut écrire I'inégalité:

< —— (6

pour toute portion de courbe intégrale intérieure & la demi-circonfé-
rence. k est une constante positive dépendant uniquement de la
position de cette demi-circonférence.

Considérons, pour fixer les idées, une portion P; Q, de courbe
intégrale a coefficient angulaire positif, et soit ), le point, le plus haut
de cette portion, situé sur la demi-circonférence. Tracons la courbe
intégrale, issue de Q,, de l'équation différentrelle :

_— = -—~—__—: (6’)

et soit P, Q; la portion de cette courbe située dans la demi-circonfé-
rence. D’apres I'inégalité (6), P; Q, est situé nécessairement au-dessous
de P, Q,. |

Or, d’aprés I’hypotheése C’, on peut
prendre le point (); aussi rapproché
que 1’on veut du coté AB. Il suffit
d’intégrer I’équation (6’) pour
s’apercevolr que, lorsque Q, est suf-
fisamment proche de AB, la portion
P, Q, touche nécessairement le seg-
ment A; B,, d’ou la contradiction.

L’hypotheése C’ est donc aussi a
rejeter.

I’ensemble des hypothéses (AA’A)
et (AA") représente les seuls cas
possihbles:.

La figare ci-contre représente le
cas (AA'A) qui est le cas général.
Pour ne pas nuire & la clarté du
dessin, une partie de la courbe inté-
grale a été supprimée.

L’Enseignement mathém., 29¢ année, 1930. 20
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Remarque. — L’étude précédente peut étre complétée par celle de la
disposition des points singuliers M,, aux environs de ’origine. Donnons
de bréves indications sur une méthode conduisant & des résultats assez
_précis:
~ Soit' M, et Mn+1 deux points singuliers consécutifs; pour fixer les

idées, supposons My, situé sur OA et M,,,, sur OB.
1 résulte de I’équation (5) que I'on a, sur la portion M, M, de la
courbe intégrale:
' dw A
Ti? < Ay,
- A étant une constante numérique positive.
Cette inégalité entraine I'inégalité:

A ‘ 4
W1 T Wy < ?(Y?z+1 + Y?z) ’ ’ (7)

qui montre que le segment M, M, 4 tend a devenir paralléle a I’axe
Oy [(déja évident sur I'équation différentielle (5)].

Faisons maintenant varier y de y, (1 + ¢) &y, ., (1 —¢), ¢ étant
une constante positive suffisamment petite pour que la seconde
quantité soit supérieure a la premiére (par exemple on peut prendre

¢ = 75 ) 1l résulte de I’équation (5) que sur la nouvelle portion de

courbe intégrale (incluse dans la précédente), on a:

A’ désigne une constante positive s’annulant avec ¢. ¢ étant ch0131
une fois pour toutes, on en deduﬂ; I’inégalité

Wpp1 ™ Yy > A" (Y?z—}—l — lez) ’ ' . (7,)

A" étant une constante numérigue.
On obtient des 1negahtes analogues en étudiant la portion Mn+1
Mn+2 ’

Ces 1negahtes peuvent étre transformees de fagon a ne contenir

+‘ b (L)nl
2
wn

compris entre deux constantes positives, ce qui permet de comparer

que la lettre . Elles indiquent alors que le ,rapport est

' . : 1
la décroissance de | wn | & celle de — .
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