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cubique ou une autre. Ces transformations mettront en évidence de
nombreuses propriétés métriques nouvelles.

Par exemple, la cubique admettant la paire des points cycliques
pour conique apolaire aura pour hessienne le lieu des foyers des

coniques inscrites et pour cayleyenne l'enveloppe des axes des coniques
inscrites. Cette cayleyenne, courbe de troisième classe, touchera en
particulier les douze bissectrices du quadrilatère, la droite de l'infini
et la droite de Newton. Par la considération de cette cubique et de

son système polaire, on sera conduit aux propriétés des foyers des

coniques inscrites, du point de Miquel et à toutes les propriétés du
quadrilatère qui ressortent de la considération de ses bissectrices.

- PROBLÈME DE CALCUL DIFFÉRENTIEL

ET INTÉGRAL DONNÉ A L'AGRÉGATION EN 1929

SOLUTION

DE

M. Henri Milloux (Strasbourg).

I. Soient Oxyz un trièdre trirectanglede sens les dérivées
partielles de z par rapport à x et y, prises sur une surface S. Former
Véquation aux dérivées partielles E qui doit être vérifiée sur S

T étant V intersection de S avec une sphère 2 de centre 0 et de rayon
quelconque r, S et2secoupent le long de sous un angle constant V. La
valeur de V pourra dépendre de r; on posera V f (r), f (r) étant une
fonction donnée.

II.Former le système différentiel (3 définissant les multiplicités
caractéristiques de E. Pour intégrer (f, il peut être commode â) utiliser les
coordonnées pluckériennes de la normale S. On trouvera ainsi que
toute courbe caractéristique C de E est située dans plan P passant
par 0. Sousquel angle P coupe-t-il la caractéristique contenant

C

III.Soient OZ un axe normal ciP, et cos a cos ß, cos a /S, ses
cosinus directeurs; soient OY un axe de cosinus directeurs— cos /3,
o, et OX un axe tel que letrièdre OXYZ trirectangle et de sens
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direct.Indiquer les formules F qui expriment les coordonnées x, y, z dün
point M deCen fonction de oc, ßet des coordonnées polaires y et y de M
dans le plan P, relativement à Vaxe polaire OX (OY ayant alors pour
équation (p

On peut représenter les cosinus directeurs de la normale S M par
des formules N qdondéduit de F en remplaçant r par 1 par un nouvel

angle Y. Quelle relation y a-t-il entre V
Le long de C, on a çp — m + y, « défini en fonction de r par une

quadrature à limite inférieure r0 fixéeune fois pour toutes, et étant une
constante arbitraire. Vérifier que, les courbes G sont toutes congruentes
entre elles.

IV. Quelle relation différentielle fx doit-on établir entre les paramètres
a, ß, y des courbes G pour que ces courbes engendrent une surface
intégrale S Quellerelation f2 doit-on établir entre a, çp et les différentielles
de a et ß pour que le système (F, fl7 f2) représente une courbe intégrale
de Véquation de Monge G associée à Vi? Former Véquation G;
géométriquement; en déduire un mode de génération des surfaces S.

Quelle relation faut-il établir entre ß et y pour que S soit de révolution
autour d'un axe passant par O Former différentielle du
troisième ordre à laquelle satisfait alors y comme fonction de ß;

V. Calculer* Vélément linéaire d^une surface S rapportée aux courbes
çù — Cte et ß — Cte; quelles relations faut-il établir entre pour que
cet élément soit de la forme

ds2(a,) du* + U M f% (ß)

Que sont alors les surfaces S
m

VI. Les variables indépendantes toujours m et ß, construire la
seconde forme différentielle quadratique de S en utilisant les formules F
et N.

Quelles sont les lignes de courbure de S, les valeurs des rayons de

courbure principaux et les surfaces S pour lesquelles ces rayons de courbure

sont fonctions Vun de Vautre
Calculer le rayon de courbure,la courbure géodésique et la torsion des

courbes T (iî° I) situées sur S.

VII. On supposera désormais f (r) r; dans cette hypothèse,
déterminer les deux surfaces, symétriques par rapport au plan z 0, qui
passent par la courbe

z 0 x2 — 4 (x2 + y2)2 -f- 4 + y2)3 0
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(On représentera l'une,S0,de ces sur,moyen de en et y] on ne

vérifiera pas que les deux surfaces sont distinctes.)
Construire les courbes représentatives dans le plan (r», y) des asym-

ptotiques de S0. Ces courbes ont une infinité de points singuliers clont on
indiquera les points dlaccumulation.

I. — La formation de l'équation (E) est immédiate. Cette équation
est:

(px + qx— z)2 -—• r2/'2 (1 + + 0 (E)

II. — Système différentiel définissant les multiplicités caractéristiques

de (E) :

dx dy dz — dp — dq

avec:

P Q Pp+ QqX+ pZ Y + qrL

1

— P x (px+ qy— z)—

1 Q y (px + qy — z) —

1

(i)

^
(Pp+ Qq)(px + qy) (px+ qy — z) (p2 -f r2/'2

z(px+ qy —+ r2/'2 1

I (X + PZ)- (1 + ^ + r/2)/.(/- + r/v} (iC + pz) f

i (Y + yZ) _ (1 + p2 + 7») /•(/• + (y +

Formons les rapports égaux aux rapports (1), et dont les numérateurs
sont respectivement d (x + pz) et d + qz). Les dénominateurs de
ces rapports sont proportionnels respectivement à: + et
(y + qz).D'où l'intégrale première:

A [x + pz) + B + 0

D'après les deux derniers rapports (1), on a:

A dp-j- B dq0

d'où
Ap+ Bq— C 0 (2)

équation qui simplifie l'intégrale première obtenue et donne l'équation:

Ax -f- By -{- Cz 0 ($)

i En vertu de l'équation (E).
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L'équation (3) montre que les caractéristiques sont situées dans de&

plans P passant par l'origine; étant donnée une surface intégrale (S^
de l'équation (E), contenant une caractéristique (C), la normale à (S)
le long de (C) est située, d'après l'équation (2), dans le plan de la.
caractéristique: c'est la normale proprement dite à la caractéristique.
Elle fait l'angle Y avec le rayon vecteur OM, et cette dernière propriété-
détermine la caractéristique dans son plan (à une rotation près)1.

Le plan tangent à la surface (S) le long de (C) enveloppe un cylindre,,
qui coupe à angle droit le plan P de la caractéristique (C).

III. — L'axe OZ étant normal au plan P, nous prendrons:

A cos a cos ß B cos a sin ß C sin a

Tableau des cosinus directeurs des axes OXYZ:

Ox Oy Oz

ox sin a cos ß sin a sin ß — cos a

OY
t

— sin ß cos ß 0

OZ cos a cos ß cos a sin ß sin a

Soit un vecteur de mesure algébrique r,. porté par une droite D
orientée, située dans le plan XOY, et dont la direction est définie par:

(OX„ D) <P

Les projections xyz du vecteur sur les anciens axes sont données

par les formules:

x —r(cosç cos ß sin a — sin © sin ß)

< y/-(cos cp sin ß sin a + sin © cos ß) (F)

l z r (~ cos © cos a)

Elles sont applicables aux anciennes coordonnées d'un point M
du plan XOY, défini dans ce plan par ses coordonnées polaires et 9.

1 La normale à la surface (S) le long de (C) engendre une surface développable (plan)..
Les caractéristiques, sur (S), sont donc des lignes de courbure. La famille de courbes
orthogonales aux caractéristiques sont orthogonales aux plans des caractéristiques, en
vertu de la position particulière de la normale à (S). Ce sont donc les courbes sphériques
r, qui constituent la deuxième famille de lignes de courbure sur (S). Ce résultat est
aussi une conséquence du théorème de Joachimsthal: r est une ligne de courbure de la.
sphère s, donc de la surface S, ces deux surfaces se coupant sous le même angle le long-
de r.
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Soit MN la normale à la surface. Elle est aussi normale à la

caractéristique. Orientons-la dans le sens habituel (sens de la concavité
de la caractéristique) et désignons par l'angle:

(OX MN)

Les cosinus directeurs de MN sont alors (application des formules

F);
f X cos <); cos ß sin a — sin d sin ß

[j. cos d sin ß sin a + sin d cos ß

v — cos d cos a

Précisons la définition de l'énoncé, de l'angle V, en la donnant sous
la forme algébrique:

(OM MN) Y

On a alors la relation:
d cd + Y + ïk-it1 1

Le long de (G), on a la relation bien connue:

coter V /* ~

d'où:
r

cote: Y
0

1

'0

/cote:
v

dv-f Y CO -{- Y

Dans cette formule, yest une constante arbitraire. Rappelons que
cos Y est égal à f (r).

On constate à nouveau que toutes les courbes (G) sont congruentes
entre elles.

IV. — Les caractéristiques (C) dépendent des trois constantes
arbitraires a, /3, y. Si l'on fixe une dépendance entre un paramètre,
et chacune de ces trois constantes, les courbes (G) engendrent une
surface. Cette surface est une surface intégrale si un déplacement
élémentaire quelconque, en un point M d'une courbe (C), est normal
à la droite MN.

Donnons à aßydes accroissements da dß et à un accroissement
dr. xyzsubissent des accroissements 3x, $z. L'équation:

lox + [jày + v8z 0

donne, après simplification, la relation différentielle:

sin <x d[i-f- <3? y 0 (fi)
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Les courbes intégrales peuvent s'obtenir en recherchant, sur une

surface intégrale (S) quelconque, l'enveloppe des caractéristiques.
En désignant par dxdy dz les projections d'un déplâceinent élémentaire

sur une courbe intégrale, on a donc les relations:

dx dy dz
bx ûy ds
dr dr dr

D'ailleurs:

7 ^ ^ j ^ j Ö 3Î j - Ö 3?dx — — dr-f- — rfa + dß Adydr T öa ^ dß ^
dy

1

Ô X dr + r(cosa — sin © cos a ß) cos a cos ß

en vertu de la relation fv De même:

ô ydy dr+ r (cos y da — sin ® cos a ß) cos a sin ß

Ô zdz — £?r + r(cos © da — sin © cos ad ß) sin a
dr v •

et toute courbe intégrale satisfait à la relation :

- cos yd<x — sin © cos adß — 0 (/*g)

de même qu'aux relations F, et à la formule définissant <p en fonction
de r.

Remarque. — L'enveloppe des caractéristiques se trouve nécessairement

sur le cône (tt) enveloppe 'des plans des caractéristiques. La
relation /2 s'obtient aussi en utilisant cette remarque.

En tout point M de l'espace passent une infinité de surfaces
intégrales, dont les plans tangents enveloppent un cône G (M) ; dans le cas
de l'équation (E), ce cône est évidemment le cône de révolution autour

TU

de OM, le demi-angle au sommet étant L — V. Rappelons que les

courbes intégrales sont les courbes les plus générales tangentes en
chacun de leurs points M au cône C (M). Les caractéristiques sont ici
les courbes planes satisfaisant à cette condition, et les courbes
intégrales sont les courbes gauches. On peut donc les définir aussi comme

• 7U

les courbes gauches les plus générales faisant l'angle — —V avec le

i II est entendu que xyz sont fonctions de r directement et par l'intermédiaire de y.

Il serait plus correct d'écrire ici aux dénominateurs: ~ ~dr d? ör
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rayon vecteur. L'équation différentielle à laquelle elles satisfont est

une conséquence immédiate de cette propriété.
En chaque point d'une courbe intégrale passe une caractéristique,

et une seule, tangente à cette courbe. On peut considérer une surface
intégrale S comme engendrée par la famille de caractéristiques
correspondant à une courbe intégrale quelconque.

Autre mocle de génération des surfaces S. — Les caractéristiques
étant des courbes planes congruentes entre elles, il est possible d'engendrer

la surface S par simple déplacement du plan d'une caractéristique.
Le point 0 est invariablement lié à la caractéristique, dans ce déplacement;

d'où suite de rotations instantanées, les axes de ces rotations
passant par 0. Le lieu d'un point M de la caractéristique, dans le
déplacement, est une courbe sphérique; c'est donc une courbe ï\
normale en chacun de ses points au plan de la caractéristique qui y
passe; le lieu des axes de rotations instantanées est donc le cône
enveloppe des plans des caractéristiques, et on obtient la surface S

en traçant une caractéristique dans un plan tangent à ce cône, et
enroulant le plan autour du cône.

Surfaces de révolution. — Pour qu'une surface S soit de révolution,
il faut et il suffît que le cône {71) se réduise à une droite, et l'axe de la
surface passe nécessairement par l'origine 1. La normale au plan P
étant orthogonale à une droite fixe, on a la relation:

La réciproque est évidente.
L'élimination des constantes m1m2 ?n3 conduit à l'équation diffé

rentielle :

Nous conserverons sous cette forme l'équation différentielle des
surfaces de révolution.

V. — L'élément linéaire est:

cos a cos ß -(- m2 cos a sin ß -f- nh sin a — 0

d2{tg a)
tg a

ou :

ds2 2

cos

d a
sin 0 cos a

1 Ce fait résulte aussi des propriétés établies dans la note 2: les courbes sphériques r
sont des lignes de courbure, donc les parallèles de la surface de révolution.
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Pour qu'il soit de la forme /1(&))doo2 + il faut

il suffît que l'expression:

1T
da

U cos 9 — sin cp cos
aß-

soit de la forme g1 (*>) g2 (ß),et, par suite, satisfasse à l'équation aux
dérivées partielles

U
52 U

_ iE — 0
dadß da dß

Toutes réductions faites, on retombe sur l'équation différentielle-
caractéristique des surfaces de révolution.

/

YI. — Seconde forme différentielle — Il est commode
de partir des formules suivantes:

D •

den d o>

2Ty S (^4 + *-±~)
\dO)dß dßdo)/

D" S^-f.
dß dß

Rappelons que sont les cosinus directeurs de la normale à la
surface S. Leurs expressions ont été données au paragraphe III.
Toutes réductions faites, il vient:

i
D =-^U-Ç-cos V \ co

Iy 0

D" r £— cos a sin (9 — Y) 4- ^5 (9 — Y) Jj^cos 9 — sin 9 cos aJ

Les lignes de courbure sont les courbes (C) 0) et F
(du dr0), résultat déjà obtenu géométriquement (note 2).
Donnons les valeurs des rayons de courbure principaux :
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Rj est fonction de &> seul ; R2 est fonction de R, lorsque ~ est

nul.
Toutes réductions faites, on retombe, dans ce cas, sur l'équation

différentielle des surfaces de révolution.

Quelques caractéristiques des courbes T. — Le calcul par les formules

de Frenet donne:
Courbure :

d a
cos- a

d?
d a

T d 3
sm c cos a

Torsion:
d2 d a\2

cos a —r-r-r, + sin a
d 3- </3

-j- sui a cos- a

7J COS c
d a

7 d ;3
sin c cos a

daV
cos-a ^

Courbure géodésique:

d a
cos a cos (c— V) + — sin (ç — "\

U

a
7* ; cos c' d 3

sin c cos a

On remarquera que la torsion est nulle dans le cas des surfaces de

révolution, et dans ce cas seulement: les courbes T ne sont planes
(cercles) que dans ce cas.

Les deux courbures de la courbe T au point M sont susceptibles
d'une interprétation géométrique très simple.

Soit (P) le plan de la caractéristique (C) passant en M, Ä la
génératrice du cône r.situéedans P, MN la normale en M à la surface S,

normale située dans le plan de la caractéristique. MT la tangente en
M à la caractéristique, MQ la perpendiculaire menée de M sur la droite
A. Les points N, T, Q sont situés sur À (le lecteur est prié de faire la
figure).

La normale à la surface S est tangente au cône (tt), qui constitue
l'une des nappes de la surface focale de S. L'autre nappe est la surface
engendrée par la développée de la caractéristique C, quand on-enroule
le plan de cette caractéristique autour du cône L'un des rayons de
courbure principaux (R2) est donc MN. Le centre de courbure de la
courbe F en M est la projection de N sur la normale principale à la
courbe T en M (théorème de Meusnier appliqué à la surface S); mais
la courbe T est aussi située sur la sphère de centre 0 et de rayon OM.
Le même centre de courbure est donc aussi la projection de 0 sur la
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même droite. La comparaison de ces deux propriétés montre que le-

centre de courbure de F en M n'est autre que le point Q;
La position du centre de courbure géodésique est déterminée par la

définition de ce point: c'est le point T.
•

VII. — On suppose cos V égal à r. On en déduit:

dw C°tg V dr—
ri

&> n'étant défini qu'à une constante additive près, nous prendrons :

.CD — Y
d'où

r— cos cd

A l'intersection de la surface S et du plan correspond, d'après-
la troisième formule F, la relation:

COS <P COS 0

qui se décompose:
1° — cos oc —0. — cos « ne peut être nul sur toute la surface serait

constamment nul). — cos a n'étant nul que sur l'intersection, celle-ci
est une caractéristique.

2° — cos 9 0.

Lorsque l'intersection est la courbe :

x2— 4 (x2+ y2)2 + 4 + y2)3 0

* -

courbe distincte d'une caractéristique, on se trouve nécessairement
dans le deuxième cas. La comparaison de l'équation précédente et
de la première formule F (où l'on à fait cos 9 0) montre que, le long-
de l'intersection, on a la relation:

sin2 ß 4 sin2 co cos2 cd

ou:
ß 2 eco + kiz.(g~H 1)

Or:
cos © cos (cd + y) 0

L'élimination de w entre ces deux dernières équations conduit à la
relation qui lie ßety,relationvraie non seulement sur l'intersection
mais sur toute la surface S :

ß —- 2 gy -f-

a est déterminé par la relation /x, qui s'écrit ici:



AGRÉGATION DE MATHÉMATIQUES (1929) 303

d'où les solutions:

a £ + 2k" r. (S,)

a + + tu (S2)
6

Apparemment, il existe 8 surfaces (S): 4 (Sx) et 4 (S2). Nous allons
réduire à 2 au plus le nombre de ces surfaces.

Nous prenons co et y comme paramètres sur une surface (S). Une
surface (S) quelconque est symétrique par rapport à l'origine (changement

de y en y + tt) et par rapport au plan (changement de signe
simultané de go et y).

Laissant e et k'fixes, les surfaces Sx et S2 sont symétriques par
rapport au plan xOy,etaussi par rapport à l'axe Oz.

Le changement de signe de etransforme une Sx en sa symétrique
par rapport à l'axe 0 z1c'est-à-dire en une S2. Le changement de

parité de k' produit la même transformation.
En résumé, il n'existe que deux surfaces distinctes au plus,

symétriques l'une de l'autre par rapport au plan xOy.
Nous choisirons pour surface S la surface S2 déterminée par le

choix: s —+ 1, k' k"0.

Asymptotiques de S. — Elles sont déterminées, toutes réductions
faites, par l'équation différentielle:

dco I3

~dy ~ — W — -y cos co sin (2co + y) sin (co + y) A)

Cette équation reste invariante après les transformations suivantes:

(co CO -f t),(y, y + tc) (co — co) ; (y — y)

(les deux dernières transformations étant simultanées), ce qui permet
de se borner à l'étude des courbes intégrales situées dans le rectangle:

— — ^co^O, 0 — y — tu

et, d'une façon plus précise, dans la portion de ce rectangle où le
second membre de l'équation (5) est réel; cette portion est le triangle
OAB dont les sommets ont pour coordonnées:

0(0,0), B(-|IB).
Un calcul simple montre que le maximum de la valeur absolue du

\! 3deuxième membre de l'équation (5) est AL—
4

Soit M un point intérieur au triangle OAB. En M passent deux
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courbes intégrales. Considérons, pour fixer les idées, celle dont le

~

dcoefficient angulaire est, en M, positif, et étudions en premier lieu

la partie de cette courbe correspondant à &> croissant.
Le coefficient angulaire reste positif jusqu'à ce que la courbe

rencontre le côté ÖB en un point Mx. En Mx, le coefficient angulaire
est infini; les deux déterminations du radical de l'équation (5) se

permutent, et ydevient une fonction décroissante de &>, jusqu'à ce que
la courbe coupe le côté OA, ce qui arrive nécessairement, le coefficient

4
angulaire de la courbe étant, en valeur absolue, supérieur à —j=. A

V3
partir de ce deuxième point d'intersection, y redevient une fonction
croissante de &>, et ainsi de suite: la courbe admet une infinité de
points singuliers MjJV^ Mn situés alternativement sur OA et
OB, et dont les abcisses &> croissent avec n.

Ceci posé, deux hypothèses peuvent être prévues a priori.
A. — Les points Mn tendent vers 0, seul point limite.
B. — Les abscisses des points Mn tendent vers une quantité négative

—s.Dans cette hypothèse, traçons un cercle (C) complètement
intérieur (c'est-à-dire frontière comprise) au triangle OAB, et dont le
centre a pour abscisse — s. Les deux faits suivants sont en contradiction

manifeste:
1° — Dans le cercle (C), le coefficient angulaire d'une portion

quelconque de courbe intégrale est inférieur, en valeur absolue, à une
constante positive dépendant uniquement de la position du cercle
(cette constante est l'inverse du minimum, en valeur absolue, du
deuxième membre de l'équation (5) dans le cercle).

2° — J1 existe, à l'intérieur du cercle (C), une portion PQ de courbe
intégrale, les points P et Q pouvant être pris aussi proches que l'on
veut des deux extrémités du diamètre du cercle (G), parallèle à l'axe
Oy (le lecteur est prié de faire la figure).

L'hypothèse B est donc à rejeter.
Etudions maintenant la portion de courbe intégrale correspondant

à m décroissant à partir de M. Plusieurs hypothèses peuvent être
prévues a priori:

' \ -

A'. — Après un nombre fini d'intersections avec les côtés OA et QB,
la courbe intégrale touche le côté AB en un point situé entre A et B.
En ce point, les deux déterminations du radical se permutent, et on
se retrouve dans le cas A.

A". — Après un nombre fini de points d'intersection, la courbe
intégrale touche le côté AB en A ou B. Elle se complète alors par sa

symétrique par rapport à A ou B.
B'. -— La courbe intégrale coupe les côtés OA et OB en une infinité

de^points P1P2 Pn ••• d'abscisses décroissantes, tendant vers une
7"U • • •

quantité supérieure à — Un raisonnement identique à celui de

l'hypothèse B permet de rejeter cette hypothèse.
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C. — L'abscisse de Pn tend vers —Etudions l'allure de la courbe

;aux environs du côté AB. Bornons-nous à une portion Ax Bx de ce

noté, de longueur suffisamment petite pour que la demi-circonférence
(G-j) de diamètre Ax Bx, intérieure au triangle OAB, n'ait pas de point
commun aux côtés OA ou OB.

Dans cette demi-circonférence, le coefficient angulaire n'est plus

limité supérieurement en valeur absolue, à cause da terme cos go,

nul sur Aj B1. Mais on peut écrire l'inégalité:
d y
d co

<
k

T.
<» + 2

(6)

pour toute portion de courbe intégrale intérieure à la demi-circonférence.

kest une constante positive dépendant uniquement de la
position de cette demi-circonférence.

Considérons, pour fixer les idées, une portion Px Qx de courbe
intégrale à coefficient angulaire positif, et soit Qx le point, le plus haut
de cette portion, situé sur la demi-circonférence. Traçons la courbe
intégrale, issue de Qx, de Véquation différentielle:

à T

to

V (0 +
(6')

2

et soit P^ Qx la portion de cette courbe située dans la demi-circonférence.

D'après l'inégalité (6), P( Ox est situé nécessairement au-dessous
de Px Qr

Or, d'après l'hypothèse G', on peut
prendre le point Qx aussi rapproché
que l'on veut du côté AB. Il suffit
d'intégrer l'équation (6') pour
s'apercevoir que, lorsque Oj est
suffisamment proche de AB, la portion
P^QX touche nécessairement le
segment A^^Bj, d'où la contradiction.

L'hypothèse G/ est donc aussi à
rejeter.

L'ensemble des hypothèses (AA'A)
et (AA") représente les seuls cas
possibles.

La figure ci-contre représente le
cas (AA'A) qui est le cas général.
Pour ne pas nuire à la clarté du
dessin, une partie de la courbe
intégrale a été supprimée. 0 0)

L'Enseignement mathém., 29e année, 1930. 20



$06 H. MILLO
Remarque. — L'étude précédente peut être complétée par celle de la*

disposition des points singuliers Mn aux environs de l'origine. Donnons
de brèves indications sur une méthode conduisant à des résultats assez-

précis:
Soit Mn et Mn+i deux points singuliers consécutifs; pour fixer le#

idées, supposons Mn situé sur OA et Mn+i sur OB.
Il résulte de l'équation (5). que l'on a, sur la portion MnMn+i de la

courbe intégrale:
doj

Tr < A' •

A étant une constante numérique positive..
Cette inégalité entraîne l'inégalité:

"«+1 — <°« < + tn) ' i1)

qui montre que le segment MnMn+i tend à devenir parallèle à l'axe
Oy [(déjà évident sur l'équation différentielle (5)].

Faisons maintenant varier y de yn(1+ s) à yn+i (i — s), s étant
une constante positive suffisamment petite pour que la seconde

quantité soit supérieure à la première (par exemple on peut prendre

s ^j.Ilrésulte de l'équation (5) que sur la nouvelle portion de

courbe intégrale (incluse dans la précédente), on a:

du>
> A T. >d Y

A' désigne une constante positive s'annulant avec s. s étant choisi
une fois pour toutes, on en déduit l'inégalité

w,.+ l — > A" (ï»+l — Y«) • (7')

A " étant une constante numérique.
On obtient des inégalités analogues en étudiant la portion Mn+i

^^71-H 2 •

Ces inégalités peuvent être transformées de façon à ne contenir
CO C

que la lettre w. Elles indiquent alors que le rapport * est

compris entre deux constantes positives, ce qui permet de comparer
lla décroissance de G)n à celle de —
n
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