Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 29 (1930)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE.

Artikel: GÉNÉRATIONS PROJECTIVES DES QUINTIQUES GAUCHES

RATIONNELLES

Autor: Deaux, R.

DOI: https://doi.org/10.5169/seals-23268

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

GÉNÉRATIONS PROJECTIVES DES QUINTIQUES GAUCHES RATIONNELLES 1

PAR

R. DEAUX (Mons).

Une quintique gauche rationnelle sera dite de première ou de seconde espèce, et sera désignée par C5 ou C5, suivant qu'elle admet une seule quadrisécante ou une infinité de telles droites; celles-ci constituent un système réglé d'une quadrique 2.

D'après M. HJELMANN³, M. E. BERTINI, à qui on doit la distinction de deux espèces de quintiques gauches rationnelles, caractérise celle de seconde espèce par la condition de se trouver sur une quadrique 4. Cette définition n'est pas équivalente à celle que nous avons posée, car une quintique binodale admet pour seule quadrisécante la droite de jonction des nœuds, et se trouve toujours sur une quadrique dont un système réglé est formé de trisécantes 5.

¹ Une petite partie des résultats obtenus a été présentée au Congrès national des Sciences qui a eu lieu à Bruxelles du 29 juin au 2 juillet 1930.

² Voir G. Loria, Curve sghembe, I, pp. 322, 324. La démonstration: « Siano infatti, a, b, c tre quadrisecanti...; due qualunque di esse non appartengono allo stesso piano, perchè altrimenti questo taglierebbe la curva in otto punti » doit être complétée, car les quadrisécantes d'une C_5^2 à point triple sont les génératrices d'un cône quadratique.

3 Sur la quintique gauche rationnelle de seconde espèce, Annales Academiae Scientiarum

Fennicae, série A, t. VII, 1916.

⁴ Sulle curve gobbe razionali del quint'ordine, Collectanea Matematica in mem. D. CHELINI, Milano, 1881, mémoire que nous n'avons pas pu consulter.

⁵ M. Loria (loc. cit., p. 330), bien qu'il ait posé la première définition, écrit à propos d'une quintique: « questa curva appartiene all' iperboloide $x_0x_3-x_1x_2=0$, onde è di II specie; ha due cuspidi...; idem, p. 329. Et M. HJELMANN, bien qu'il ait choisi la seconde définition, écrit que l'un des systèmes réglés de la quadrique support est formé de quadrisécantes.

Nous choisissons la définition que nous avons énoncée parce que les générations qui vont suivre sont réglées par le nombre de quadrisécantes.

1. — Dans le présent travail, la recherche de générations projectives caractérisant une C_5^1 ou une C_5^2 est basée sur le fait que seules les C_5^1 ont des trisécantes. Il est vrai qu'une C_5^2 à point triple en possède une gerbe, mais on pourra vérifier que de telles trisécantes ne sont pas utilisables dans le raisonnement qui sera produit.

Toute C_5^1 est, d'une infinité de manières, l'intersection partielle de deux surfaces cubiques réglées ayant même directrice double.

Soient q, t', t'' la quadrisécante et deux trisécantes quelconques ne se coupant pas en un point double éventuel de C_5^1 . Par projection des points de la courbe, les faisceaux de plans (q), (t'), de même que (q), (t'') sont en correspondance (2, 1) et engendrent deux surfaces cubiques Σ'_3 , Σ''_3 qui, ayant même directrice double q, n'ont en outre en commun que la C_5^1 .

 $Une \ {
m C_5^2}$ ne se trouve sur aucune surface cubique réglée car celle-ci devrait avoir pour génératrices toutes les quadrisécantes.

2. — Si deux surfaces cubiques réglées Σ_3' , Σ_3'' , ayant même directrice double q ont en commun une C_5^1 , elles sont tangentes en tout point de C_5^1 situé sur q et réciproquement. La nature de ces points se détermine comme suit. Les involutions (i'), (i'') engendrées par les couples de plans tangents α_1' , α_2' et α_1'' , α_2'' menés à Σ_3' , Σ_3'' en un point A variable sur q étant projectives à la ponctuelle (A) sont projectives entre elles. Si (i'), (i'') constituent une seule involution, c'est-à-dire si, représentés sur une conique, les couples homologues sont fournis par les rayons homologues de deux faisceaux concentriques et projectifs, les rayons doubles de ceux-ci donnent les coïncidences dans (i'), (i''): la C_5^1 est binodale, en comprenant dans ce vocable la possibilité pour la courbe d'être cuspidale-nodale, bicuspidale ou tacnodale.

Lorsque (i'), (i'') sont distinctes, l'examen des cas de coïncidences prouve que la quadrisécante q peut contenir quatre points distincts ou un point double avec deux points distincts ou

coïncidents, ou bien être soit tangente-bisécante, soit bitangente, soit unisécante-tangente d'inflexion, soit tangente d'ondulation.

3. — Une C₅ binodale est caractérisée par l'identité des involutions (i'), (i'') (2). Si un couple variable α_1 , α_2 de cette involution (i) est tangent à Σ_3' , Σ_3'' aux points A', A'' de q et rencontre C_5^1 en A₁, A₂, les plans A'A₁A₂, A"A₁A₂ contiennent respectivement les trisécantes t', t'' (1) et engendrent donc deux faisceaux qui, étant perspectifs aux ponctuelles (A'), (A"), sont projectifs à l'involution (i). La droite A₁A₂ engendre par suite un système réglé d'une quadrique; celle-ci a un point double si t', t" se coupent en un point simple de C₅. Dès lors, toute C₅ binodale est située sur une quadrique $\bar{\Sigma_2}$ et est le lieu des points communs à un rayon variable d'un système réglé de Σ_2 et au couple de plans homologues d'une involution projective à ce système, portée par la quadrisécante. Si Σ_2 n'a pas de point double, l'un de ses systèmes réglés est composé de trisécantes, l'autre de bisécantes de C_5^1 ; si Σ_2 a un point double, celui-ci est sur C₅ et les génératrices du cône ou du cylindre sont trisécantes.

COROLLAIRES. — 1º Le lieu des trisécantes d'une C_5^1 binodale se compose d'une quadrique et des cônes cubiques projetant C_5^1 de ses points doubles.

2º Si une C₅ est sur une quadrique, elle est binodale.

4. — Si un système réglé (Σ_2) d'une quadrique est projectif à une involution de plans (i) dont le support rencontre la quadrique en deux points X, Y réels distincts ou confondus ou imaginaires conjugués, et si le rayon de (Σ_2) issu de X ou Y n'est pas situé dans l'un de ses plans homologues, un rayon variable de (Σ_2) rencontre ses plans homologues sur une C_5^1 ayant X, Y pour points doubles. Si la quadrique a un point double S, celui-ci est simple sur C_5^{1} . Si i est un rayon de (Σ_2) , le lieu est une cubique gauche.

Il suffit de considérer la surface cubique engendrée par l'involution (i) et le faisceau projectif des plans projetant (Σ_2) de

¹ On ne peut donc pas, du fait qu'une quintique est projetée d'un point suivant un cône du second ordre, conclure, avec M. Loria (op. cit., pp. 334, 337, 339), que ce point est triple. « Essendo questa (une quintique) proiettata dal punto M secondo un cono quadrico é chiaro che questo è triplo per la curva (p. 339).

l'une quelconque de ses directrices ou de l'un quelconque de ses rayons si la quadrique a un point double. Suivant que un ou deux des rayons de (Σ_2) issus de X ou Y se trouvent dans un plan homologue, le lieu se complète par une biquadratique ayant un point double ou par une cubique gauche.

Remarque. Une involution de plans étant un faisceau de quadriques, la génération caractéristique de la C_5^1 binodale est un cas particulier du théorème suivant: Si trois faisceaux de surfaces d'ordres m, n, p sont projectifs, le lieu des points communs à trois surfaces homologues est une courbe d'ordre mn + np + pm (Chasles, Rapport sur les progrès de la Géométrie, p. 249; Cremona, Theorie der Oberflächen, p. 104).

5. — Voici trois exemples de C₅ binodales:

1º Si les faces α_1 , α_2 d'un dièdre droit mobile autour de son arête q rencontrent en A_1 , A_2 une génératrice rectiligne d'une surface réglée, la normale a à celle-ci au milieu A du segment A_1 A_2 rencontre α_1 , α_2 sur une C_5^1 binodale, ou sur une cubique gauche si q est un axe focal du paraboloïde engendré par A_5 .

L'involution orthogonale $(\alpha_1 \alpha_2)$ étant en effet projective à la ponctuelle (A) l'est aussi au système réglé (a). Le rayon a ne peut se trouver dans α_1 que si ce plan est isotrope et tangent au paraboloïde.

2º Etant donnés un faisceau tangentiel (Σ) de quadriques Σ et deux droites q, q', la corde des contacts des plans tangents menés par q' et les plans tangents α_1 , α_2 menés par q à la même quadrique Σ se coupent en deux points qui décrivent en général une C_5^1 binodale. On a un lieu analogue si, (Σ) étant ponctuel, q est une arête du tétraèdre conjugué commun. L'involution ($\alpha_1 \alpha_2$) et le système réglé engendré par la corde considérée, conjuguée de q' par rapport à Σ sont en effet projectifs à (Σ).

Si q=q', on conclut que le lieu des points de contact des plans tangents menés par q est en général une cubique gauche, car la conjuguée de q par rapport à chacune des quadriques tangentes à q se trouve dans ses plans homologues.

Soit (ϖ_1) la conique du faisceau tangentiel (Σ) située dans la face $\varpi_1 = P_2 P_3 P_4$ du tétraèdre conjugué commun.

Le plan polaire α d'un point fixe S par rapport à Σ et le support

a de la ponctuelle des pôles de α par rapport à toutes les quadriques Σ coupent ϖ_1 suivant une droite d et son pôle relativement à (ϖ_1) .

Comme α décrit un faisceau du troisième ordre projectif à (Σ) et coupé par ω_1 suivant un faisceau du second ordre (d), a engendre un système réglé conique de sommet S et projectif à l'involution $(\alpha_1\alpha_2)$. Par suite, la perpendiculaire a abaissée d'un point fixe S sur le plan polaire α de ce point par rapport à une quadrique variable Σ d'un faisceau homofocal rencontre les plans tangents à Σ menés par une droite fixe q, en deux points qui décrivent en général une C_5^1 binodale située sur un cône du second ordre de sommet S. Ainsi, si on considère le point S (x_0, y_0, z_0) et la droite q à l'infini dans le plan de symétrie xOy de la quadrique d'équation

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} + \frac{z^2}{c^2 + \lambda} = 1.$$

les équations de α , a, α_1 , α_2 sont

$$\frac{xx_0}{a^2 + \lambda} + \frac{yy_0}{b^2 + \lambda} + \frac{zz_0}{c^2 + \lambda} = 1 ,$$

$$(x - x_0) \frac{a^2 + \lambda}{x_0} = (y - y_0) \frac{b^2 + \lambda}{y_0} = (z - z_0) \frac{c^2 + \lambda}{z_0} ,$$

$$z^2 = c^2 + \lambda = t^2$$

et la C₅ est représentée par

$$\begin{cases} x = \frac{x_0}{z_0} \frac{t^3 + (a^2 - c^2)z_0}{t^2 + a^2 - c^2} \\ y = \frac{y_0}{z_0} \frac{t^3 + (b^2 - c^2)z_0}{t^2 + b^2 - c^2} \\ z = t \end{cases}$$

 point g' g'' décrit la C_5^1 , le même raisonnement fait avec le faisceau (γ) , la surface Σ_3'' et un point P'' qui peut coïncider avec P', prouve que toute C_5^1 peut s'obtenir comme lieu du point commun aux plans homologues de trois faisceaux projectifs de plans, l'un porté par une droite q, les deux autres (P'), (P'') non superposés et portés par des cônes concentriques ou non et qui peuvent être, un seul ou tous deux, soit du second ordre soit du quatrième ordre et de la troisième classe, mais dans ce dernier cas la droite q doit être tangente au cône et le plan tangent qui la contient doit être un élément uni du faisceau conique et du faisceau (q).

La ligne de contact de Σ_3' et du cône P' est une cubique gauche ou une quartique gauche de seconde espèce admettant t' pour uni- ou bisécante, suivant que P' est ou non sur Σ_3' (E. Weyr, Regelflächen dritter Ordnung, pp. 94, 98); les génératrices g' de Σ_3' marquent sur cette courbe et sur t' deux ponctuelles projectives ayant un ou deux éléments unis. En utilisant la propriété corrélative et en limitant l'énoncé au cas de la cubique gauche, on conclut que toute C_5^1 peut s'obtenir comme lieu du point commun aux plans homologues de trois faisceaux projectifs de plans, l'un (q) du premier ordre, les deux autres (ϖ'), (ϖ'') du troisième ordre non superposés et tels que (q), (ϖ') de même que (q), (ϖ'') ont un élément uni 1 .

Nous n'examinons pas les propositions réciproques, nécessaires pour la discussion de lieux tels que le suivant: Si les plans tangents α' , α'' à deux cylindres de révolution roulent sur ceux-ci avec la vitesse angulaire constante ω , et si un plan α tourne autour d'une droite fixe avec la vitesse $\frac{\omega}{2}$, le point $\alpha\alpha'\alpha''$ décrit en général une C_5^1 .

7. — Soient q une quadrisécante d'une C_5^2 ; b une bisécante ne rencontrant pas $q: \Sigma_2$ la quadrique avec ou sans point double qui contient C_5^2 . Par projection des points de la courbe, les faisceaux de plans (q), (b) sont en correspondance (3, 1) et engendrent une surface du quatrième ordre Σ_4 , qui, ayant pour directrice triple

 $^{^1}$ On peut aussi, en considérant simultanément un cône et une développable circonscrits, engendrer une C^1_5 à l'aide de trois faisceaux projectifs de plans, respectivement du premier, du second et du troisième ordre.

la génératrice q de Σ_2 , n'a en outre en commun avec celle-ci que la C_5^2 . Les génératrices g, a de Σ_4 , Σ_2 et situées dans un plan α passant par q se coupent en un point de C_5^2 . Si S est un point quelconque de Σ_4 non situé sur q ou b, le plan Sg enveloppe, lorsque α varie, un cône tricuspidal de la troisième classe bitangent au plan Sb, et le système réglé (a), projectif au faisceau de plans (α) , est projectif au système des plans Sg. Par suite, toute C_5^2 peut s'obtenir à l'aide d'un système réglé projectif à un faisceau conique de plans porté par un cône tricuspidal de la troisième classe. Cette génération est l'analogue de celle qui fournit la cubique gauche ou la biquadratique de seconde espèce à l'aide d'un faisceau de plans du premier ou du second ordre rapporté projectivement à un système réglé.

On obtient des générations de la C_5^2 avec des formes plus élevées en considérant les développables circonscrites à Σ_4 le long des sections planes (6).

- 8. Soient (γ) une conique inscrite au triangle que forment b et deux génératrices réelles ou imaginaires conjuguées g_1 , g_2 de Σ_4 et issues d'un point quelconque de q (7). La développable de la huitième classe circonscrite à Σ_4 et à (γ) comprend les faisceaux de plans d'axes g_1 , g_2 ainsi que trois fois le faisceau de plans d'axe b; l'ensemble restant est donc formé par les plans osculateurs d'une cubique gauche. Chacun de ces plans contient une génératrice g de Σ_4 , coupe l'axe b de la cubique sur le plan $\alpha = qg$, et la C_5^2 sur la génératrice a de Σ_2 située dans α . Dès lors, toute C_5^2 est le lieu du point commun à deux éléments homologues d'un système réglé et d'un faisceau de plans du troisième ordre rapportés projectivement. En vue des applications qui seront faites de cette génération, on va discuter sa réciproque.
- 9. Si un faisceau de plans du troisième ordre $(C_3) = (\alpha, \beta, \gamma, ...)$ porté par une cubique gauche C_3 est projectif à un faisceau de plans du premier ordre $(q) = (\alpha_1, \beta_1, \gamma_1, ...)$ de support q, la droite commune à deux plans homologues engendre une surface du quatrième ordre Σ_4 ayant q pour droite triple.

En effet, soit i la droite commune à deux plans quelconques λ , μ du faisceau (C₃). Les seuls points du lieu situés sur i sont

 $i\lambda_1$, $i\mu_1$ et les deux coïncidences des ponctuelles projectives sections de (C_3) , (q) par i. Comme un plan tel que α_1 ne renferme de Σ_4 que les droites $\alpha\alpha_1$, q, celle-ci est triple.

Lorsque q n'est ni un axe ni un semi-axe de C_3 , cette droite est directrice triple de Σ_4 , et la surface, en général de la neuvième espèce de Sturm (*Liniengeometrie*, I, pp. 58-60) ne peut pas se décomposer car (C_3) et (q) n'ont pas de plan commun. Σ_4 aura en outre une directrice simple, axe de C_3 , et sera de la dixième espèce de Sturm si les trois génératrices de Σ_4 issues d'un point de q sont dans un même plan; car l'axe de C_3 situé dans ce plan est coupé par (C_3), (q) suivant deux ponctuelles projectives qui, ayant trois coïncidences, sont identiques 1 .

Si q est un semi-axe de C_3 , cette droite est directrice double et génératrice simple de Σ_4 (onzième espèce de Sturm). Lorsque (q) et (C_3) ont un plan uni, Σ_4 comprend ce plan et une surface cubique qui a la directrice double q et une directrice simple, axe de C_3 (E. Weyr, $op.\ cit.$, p. 76).

Si q est un axe de C_3 , Σ_4 est de la douzième espèce de Sturm; lorsque (q) et (C_3) ont un ou deux plans unis, Σ_4 comprend un plan et une surface cubique de Cayley, ou deux plans et une quadrique.

10.—Si un faisceau de plans du troisième ordre $(C_3) = (\alpha, \beta, \gamma, ...)$ est projectif à un système réglé $(\Sigma_2) = (a, b, c, ...)$ d'une quadrique Σ_2 , le point commun à deux éléments homologues décrit en général une C_5^2 . Si Σ_2 a un point double S, ce point est triple sur C_5^2 et les tangentes t', t'', t''' en S sont dans (Σ_2) les homologues des plans τ' , τ'' , τ''' de (C_3) issus de S.

 Σ_2 A UN POINT DOUBLE. Si q est un rayon de (Σ_2) autre que t', t'', t''' les faisceaux projectifs q (Σ_2) et (C_3) engendrent une Σ_4 indécomposable qui coupe Σ_2 suivant q compté trois fois et une C_5^2 lieu du point $a\alpha(9)$.

La C_5^2 comprend une, deux, trois droites associées à une biquadratique de point double S, une cubique, une conique suivant que un, deux, trois des plans τ' , τ'' , τ''' contiennent leur rayon homologue.

¹ Reye examine le corrélatif (Geometrie der Lage, II, 1907, p. 303).

 Σ_2 N'A PAS DE POINT DOUBLE. Le cas général se traite comme ci-dessus, avec une directrice q de (Σ_2) .

Lorsque Σ_2 n'est pas inscrite à la développable osculatrice à C_3 , on choisit q ni axe ni semi-axe de C_3 ; Σ_4 est indécomposable. Si Σ_4 a une directrice simple s qui est directrice de (Σ_2) , C_5^2 se compose de s et de quatre rayons de (Σ_2) ; si s n'est pas directrice de (Σ_2) , la C_5^2 se décompose en une biquadratique de seconde espèce et une droite, ou en une cubique gauche et deux droites suivant que un ou deux rayons de (Σ_2) issus des points s Σ_2 se trouvent dans leur plan homologue. Si Σ_4 n'a pas de directrice s, trois rayons au plus de (Σ_2) sont sur Σ_4 ; la C_5^2 peut se composer d'une biquadratique, d'une cubique ou d'une conique associées à un, deux ou trois rayons de (Σ_2) .

Lorsque (Σ_2) est composé de semi-axes de C_3 , q est un axe. Si on exclut le cas où (Σ_2) et (C_3) sont projectifs, il n'existe que deux rayons a, b de (Σ_2) situés dans leurs plans homologues α , β ; on choisit $q \neq \alpha\beta$, et la C_5 comprend a, b et une cubique gauche.

Lorsque (Σ_2) est composé d'axes de C_3 , on choisit le semi-axe q tel que le plan osculateur qui le contient ne renferme pas le rayon homologue. (Σ_2) a trois rayons situés dans leurs plans homologues, car (C_3) est projectif à l'involution des plans osculateurs menés par les rayons de (Σ_2); la C_5 se compose de ces trois rayons et d'une conique.

11. — Les plans osculateurs d'une cubique gauche formant un faisceau projectif à la ponctuelle des points de contact, la considération de formes projectives portées par la cubique C₃ et de quadriques ou circonscrites à C₃ ou inscrites dans la développable osculatrice conduit à des C₅ telle la suivante: Soit S un point fixe quelconque sur une cubique gauche qui porte deux ponctuelles projectives (A), (A'); la droite SA rencontre le plan osculateur en A' en un point qui décrit une C₅ si S n'est pas un point double des ponctuelles.

Ainsi, on pourra vérifier que, étant donnée la courbe horoptère d'équations

$$x=rac{a}{1+\lambda^2}$$
, $y=rac{a\,\lambda}{1+\lambda^2}$, $z=b\,\lambda$,

si les faces d'un dièdre droit mobile autour de l'asymptote Oz de la courbe rencontrent celle-ci en A, A' et si on prend le point S en (a, o, o), la C_5^2 est donnée par

$$x = a + \frac{a}{(1+t^2)(2+t^2)}$$
, $y = \frac{a}{t(1+t^2)(2+t^2)}$, $z = \frac{b}{t(2+t^2)}$, $(t = -\lambda)$.

12. — Une ponctuelle du premier ordre (A, B, C, ...) projective à un système réglé $(\Sigma_2) = (a, b, c, ...)$ l'est aussi au faisceau du second ordre (a', b', c' ...) réciproque de la ponctuelle du second ordre section de (Σ_2) par un plan non tangent σ , relativement à une conique quelconque (σ) de ce plan. Les plans Aa', Bb' ... osculent une cubique gauche si les formes (A), (a') n'ont pas d'éléments homologues incidents, et enveloppent un cône du second ordre si deux tels éléments existent; le point (a, Aa') décrit donc en général une C₅ (10) ou une biquadratique de seconde espèce (Mathesis, 1929-84). En supposant que (σ) est le cercle imaginaire à l'infini, on a le théorème: Si une ponctuelle (p) = (A, B, C, ...) est projective à un système réglé $(\Sigma_2) = (a, b, c, ...)$ d'un hyperboloïde, la projection orthogonale de A sur a décrit en général une C₅ (Neuberg et Degueldre, Sur quelques lieux géométriques dans l'espace, supplément à Mathesis, juin 1909, p. 15). Le théorème est encore vrai pour un cône de sommet S, ce point est triple sur C₅. Si p et le rayon homologue de son point à l'infini sont orthogonaux, le lieu est en général une biquadratique gauche de seconde espèce C₄.

La projection orthogonale A' d'un point A à distance finie sur une droite a à distance finie est à l'infini et unique si, a étant isotrope, A n'est pas dans le plan isotrope α passant par a; A' est quelconque sur a si A est dans α . Dès lors, quatre points du lieu sont cycliques. La C_5^2 ou la C_4^2 dégénèrent en deux rayons isotropes a_1 , a_2 de (Σ_2) associés à un cercle gauche ou à un cercle plan lorsque les points $p\alpha_1$, $p\alpha_2$ de (p) sont les homologues des rayons a_1 , a_2 , en désignant par α_1 , α_2 les plans isotropes passant par a_1 , a_2 .

Le rapport anharmonique des quatre rayons isotropes a_i de (Σ_2) détermine un complexe tétraédral dont le tétraèdre de base est formé par les plans isotropes α_i passant par les a_i . La C_5^2

dégénère en les quatre rayons isotropes a_i et en une directrice q de (Σ_2) lorsque p est un rayon du complexe considéré et que les points $p\alpha_i$ sont les homologues des a_i .

 Σ_2 EST UN PARABOLOÏDE. Le plan à l'infini étant tangent, le faisceau (a') est du premier ordre et les plans Aa' enveloppent un cylindre parabolique ou engendrent un faisceau. Si p n' est pas orthogonale au rayon homologue de son point à l'infini et si celui-ci ne correspond pas au rayon à l'infini de (Σ_2) , le lieu est une C_4^2 ayant deux points cycliques, ou se compose de deux rayons isotropes de (Σ_2) et d'une hyperbole; si les éléments à l'infini de (p) et (Σ_2) sont homologues, le lieu comprend le rayon à l'infini et un cercle gauche qui peut dégénérer en les rayons isotropes et une directrice de (Σ_2) . Si p est orthogonale au rayon homologue de son point à l'infini, le lieu est un cercle gauche ou les rayons isotropes et une directrice de (Σ_2) .

13. — Soit S le pôle par rapport à une quadrique ∑ d'un plan σ n'appartenant pas à un faisceau du troisième ordre $(C_3) = (\alpha, \beta, \gamma, ...)$. La section de (C_3) par σ est, suivant que σ ne contient pas ou contient une tangente t à la cubique C3, l'ensemble (a', b', c', ...) des tangentes à une quartique tricuspidale bitangente à l'axe q' de C_3 dans σ , ou à une cubique cuspidale ayant t' pour tangente inflexionnelle. Par l'intermédiaire de la ponctuelle section de (C_3) par t' ou q', on a (a', b', c', ...) $\overline{\wedge}$ (C_3) et les réciproques a, b, \dots relativement à Σ de a', b', \dots décrivent une série réglée (S3) située sur un cône cubique de sommet S qui a une génératrice double q, et projective à (C_3) . Les faisceaux $q(\Sigma_3)$ et (C_3) étant projectifs, le point $a \propto$ décrit la sextique qui, avec q comptée six fois, constitue l'intersection du cône cubique Σ_3 et d'une surface quartique ayant q pour droite triple (9). Par suite, étant donnés une quadrique > sans ou avec point double, une cubique gauche C_3 et un plan σ non osculateur à C_3 dont le pôle est S, le pôle de σ par rapport à la conique section de Σ par un plan osculateur variable à C3 décrit en général une sextique gauche rationnelle C₆ ayant le point triple S et pour seule quintisécante la réciproque q par rapport à Σ de l'axe de C3 situé dans σ; les tangentes t₁, t₂, t₃ en S sont les réciproques des intersections de σ avec les plans osculateurs τ_1 , τ_2 , τ_3 à C_3 issus de S.

La C_6 dégénère en t_1 et une C_5^1 de point double S avec q pour quadrisécante, ou en t_1 , t_2 et une C_4^2 , ou en t_1 , t_2 , t_3 et une cubique gauche suivant que une, deux ou trois droites t_1 , t_2 , t_3 se trouvent dans τ_1 , τ_2 , τ_3 .

Lorsque σ est osculateur à C_3 , la série réglée (a, b, c, ...) est sur un cône du second ordre et le lieu considéré est en général une C_5^2 de point triple S (10).

14. — On suppose que Σ est une sphère de centre S et que σ est le plan de l'infini (13).

Suivant qu'une cubique gauche C_3 n'est pas ou est une parabole, la podaire de sa développable osculatrice par rapport à un point S est une sextique rationnelle ayant six points cycliques (12) et, passant par le point triple S, une quintisécante normale aux plans osculateurs parallèles de C_3 , ou une C_5^2 ayant quatre points cycliques et le point triple S. Si S est sur un axe focal de C_3 la sextique se compose de deux droites isotropes et d'une C_4^2 , et la C_5^2 comprend deux telles droites et un cercle gauche (12).

Le corrélatif du théorème 13 concerne la développable engendrée par le plan polaire d'un point fixe S par rapport au cône circonscrit à une quadrique Σ et dont le sommet décrit une cubique gauche. Si Σ est le cercle imaginaire à l'infini, on obtient l'antipodaire d'une cubique gauche relativement à un point S; on énoncera aisément les résultats qui, d'ailleurs, peuvent aussi s'obtenir en prenant l'inverse C_6 de la cubique pour le pôle S et une puissance k^2 , puis la réciproque de C_6 par rapport à la sphère (S, k).

15. — Le faisceau du troisième ordre engendré par le plan polaire α d'un point fixe S par rapport à une quadrique variable Σ d'un faisceau tangentiel général est projectif au système réglé conique (Σ_2) de sommet S que décrit le support a de la ponctuelle des pôles de α (5), et la droite a est le rayon polaire de α pour les cônes de sommet $A = a\alpha$ et circonscrits aux quadriques Σ . Donc (10), étant donnés un point fixe S et deux quadriques ayant un seul tétraèdre conjugué commun P_1 P_2 P_3 P_4 , le lieu du sommet A des cônes circonscrits aux quadriques et tels qu'une arête de leur trièdre conjugué commun passe par S, est en général une C_5^2 de

point triple S où les tangentes sont les arêtes du trièdre relatif à S; le point (SP₁, P₂ P₃ P₄) est sur C₅ (L. Lipkin, Ueber räumlichen Strophoiden, Dissertation, Jena, 1870, pp. 7-16; Loria, op. cit., p. 337).

Il existe quatre génératrices b_i (i=1,2,3,4) du cône Σ_2 qui sont tangentes en B_i à la quadrique Σ du faisceau pour laquelle S est le pôle de α . Le plan β_i ayant b_i pour support de la ponctuelle de ses pôles coupe α suivant la conjuguée de b_i par rapport à Σ ; la droite $\alpha\beta_i$ passe donc par B_i et ce point est sur C_5^2 . Dès lors, la C_5^2 rencontre le plan polaire α de S par rapport à une quadrique quelconque Σ du faisceau au point A et aux quatre points communs à Σ et au cône du second ordre Σ_2 contenant C_5^2 (Lipkin, p. 22).

à Σ et au cône du second ordre Σ_2 contenant C_5^2 (Lipkin, p. 22). Si la droite a est dans α elle fait partie de C_5^2 . Donc, si S appartient à la développable de base du faisceau, la C_5^2 comprend une génératrice de cette surface et une C_4^2 de point double S.

COROLLAIRE. — Si les quadriques Σ sont homofocales, a est la normale en A à la quadrique tangente à α . Les normales à des quadriques homofocales et issues d'un point S se trouvent sur un cône équilatère Σ_2 . Leurs pieds décrivent une C_5^2 de point triple S, les tangentes étant les normales aux quadriques qui passent par S.

La C_5^2 contient les projections orthogonales de S sur les plans de symétrie, les douze intersections de Σ_2 avec les coniques focales, quatre points cycliques et le point à l'infini du diamètre qui passe par S (Lipkin, passim).

Ce lieu est évidemment:

1º Celui des sommets des cônes perspectifs à une conique et dont un axe passe par un point fixe S, car une conique focale et le cercle imaginaire à l'infini définissent le faisceau homofocal;

2º Celui des pieds des axes d'une quadrique quelconque du faisceau et concourant en S 1.

16. — La cubique gauche osculée par α (15) est une parabole si P_1 P_2 P_3 P_4 a une face à l'infini ou si S est le centre d'une quadrique du faisceau. Donc, dans un faisceau tangentiel de quadriques dont le tétraèdre conjugué commun n'a pas de face à

¹ G. Loria (op. cit.) traite séparément ces questions par des calculs qui ne mettent pas en évidence leur identité.

l'infini, les pieds des axes relatifs au centre d'une quadrique fixe du faisceau se trouvent sur une C_5^2 (14).

17. — Le centre de la conique, section d'une quadrique Σ_0 d'un faisceau homofocal par le plan polaire α d'un point fixe S relativement à une quadrique variable Σ du faisceau, décrit une C_5^2 ayant le centre de Σ pour point triple et les axes de symétrie pour tangentes.

La plan de l'infini étant en effet osculateur à la parabole gauche qu'oscule α , il suffit d'appliquer le théorème 13.

Relativement à la quadrique Σ d'équation

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} + \frac{z^2}{c^2 + \lambda} = 1 , \qquad (1)$$

le plan polaire α du point $S(x_0, y_0, z_0)$ est donné par

$$\frac{xx_0}{a^2 + \lambda} + \frac{yy_0}{b^2 + \lambda} + \frac{zz_0}{c^2 + \lambda} = 1 \tag{2}$$

et coupe la quadrique Σ_0 d'équation (1) où on fait $\lambda=0$, suivant une conique dont le centre A est sur le diamètre conjugué à α et d'équations

$$x\frac{a^2 + \lambda}{a^2 x_0} = y\frac{b^2 + \lambda}{b^2 y_0} = z\frac{c^2 + \lambda}{c^2 z_0}.$$
 (3)

Les coordonnées de A, tirées de (2) et (3), sont donc, si on pose

$$\Delta = a^{2}x_{0}^{2}(b^{2} + \lambda)^{2}(c^{2} + \lambda)^{2} + b^{2}y_{0}^{2}(c^{2} + \lambda)^{2}(a^{2} + \lambda)^{2} + c^{2}z_{0}^{2}(a^{2} + \lambda)^{2}(b^{2} + \lambda)^{2} ,$$

$$+ c^{2}z_{0}^{2}(a^{2} + \lambda)^{2}(b^{2} + \lambda)^{2} ,$$

$$x = \frac{a^{2}x_{0}}{\Delta}(a^{2} + \lambda)(b^{2} + \lambda)^{2}(c^{2} + \lambda)^{2} ,$$

$$y = \frac{b^{2}y_{0}}{\Delta}(b^{2} + \lambda)(c^{2} + \lambda)^{2}(a^{2} + \lambda)^{2} ,$$

$$z = \frac{c^{2}z_{0}}{\Delta}(c^{2} + \lambda)(a^{2} + \lambda)^{2}(b^{2} + \lambda)^{2} ,$$

La projection orthogonale A' d'un point fixe S' (x', y', z') sur α décrit aussi en général une C_5^2 à point triple S' (13).

Les équations de S'A' étant

$$(x-x')\frac{a^2+\lambda}{x_0}=(y-y')\frac{b^2+\lambda}{y_0}=(z-z')\frac{c^2+\lambda}{z_0}$$

les coordonnées de A' sont, si on pose

$$P = \frac{x_0 x'}{a^2 + \lambda} + \frac{y_0 y'}{b^2 + \lambda} + \frac{z_0 z'}{c^2 + \lambda},$$

$$Q = \left(\frac{x_0}{a^2 + \lambda}\right)^2 + \left(\frac{y_0}{b^2 + \lambda}\right)^2 + \left(\frac{z_0}{c^2 + \lambda}\right)^2,$$

$$x = x' + \frac{x_0}{a^2 + \lambda} \times \frac{1 - P}{Q}, \qquad y = y' + \frac{y_0}{b^2 + \lambda} \cdot \frac{1 - P}{Q},$$

$$z = z' + \frac{z_0}{c^2 + \lambda} \cdot \frac{1 - P}{Q}.$$
(4)

En supposant $x' = x_0$, $y' = y_0$, $z' = z_0$, on obtient les équations du lieu des pieds des normales issues de S, aux quadriques homofocales (15). L'x d'un point du lieu est

$$x = x_0 (a^2 + \lambda) \frac{y_0^2 (c^2 + \lambda)^2 (a^2 - b^2) + z_0^2 (b^2 + \lambda)^2 (a^2 - c^2) + (b^2 + \lambda)^2 (c^2 + \lambda)^2}{x_0^2 (b^2 + \lambda)^2 (c^2 + \lambda)^2 + y_0^2 (c^2 + \lambda)^2 (a^2 + \lambda)^2 + z_0^2 (a^2 + \lambda)^2 (b^2 + \lambda)^2}.$$

y et z s'obtiennent par permutation. C'est le résultat de M. Loria. Si x' = y' = z' = 0, les équations (4) sont

$$x = x_0 \frac{(a^2 + \lambda)(b^2 + \lambda)^2(c^2 + \lambda)^2}{x_0^2(b^2 + \lambda)^2(c^2 + \lambda)^2 + y_0^2(c^2 + \lambda)^2(a^2 + \lambda)^2 + z_0^2(a^2 + \lambda)^2(b^2 + \lambda)^2}$$

et ses analogues.

18. — Soient sur une quadrique Σ pouvant avoir un point double S, (σ') , (σ'') deux coniques sans point double dont les plans se coupent suivant une droite S rencontrant S en S, S, S, S les rayons, issus de S, S, S, d'un système réglé S = S (a, b, ...) de S; S (b) = S tangentes en S à S (a'), S (a''); S une courbe gauche d'ordre S ayant les rayons de S pour unisécantes, ou S (n — 1) — 1 sécantes si le point S (n — 2)-uple S existe, et qui ne passe ni par S ni par S; S (a''), S (a''),

 $(A' A'' A A_0) = k$ est une courbe C_{n+2} d'ordre n+2 qui passe par x, y, par les 2n points communs à C_n et (ϖ') ou (ϖ'') , et qui admet les rayons de (Σ) pour unisécantes.

 C_{n+2} peut être dite la transformée anharmonique de C_n pour les coniques (ϖ') , (ϖ'') et le coefficient k^{-1} .

Un plan α mobile autour de s engendre un faisceau (α) projectif à l'involution I_n du n^e ordre décrite par les n rayons a_i , i=1,2,...n, de (Σ) issus des points αC_n . Si q est une directrice de (Σ), ou un rayon de (Σ) lorsque S existe, le plan σ_0 passant par s et tel que s (x' x'' α α_0) = k engendre un faisceau qui, étant projectif à (α), l'est aussi à l'involution de plans du n^e ordre qI_n . Les droites $\alpha_0 - (qa_i)$ décrivent une surface Σ_{n+1} d'ordre n+1 qui admet q pour droite n-uple et qui ne contient ni x ni y; elle recoupe donc Σ suivant une courbe C_{n+2} . Le point X de C_{n+2} provient du point de C_n sur x.

La tangente t_x à C_{n+2} en X est telle que

$$(x' x'' x t_x) = k ,$$

car on a X (A' A'' A A₀) = k et lorsque a se rapproche indéfiniment de x, les positions limites des droites XA', XA'', XA, XA₀ sont x', x'', x, t_x .

Lorsque C_n passe par X et y admet une tangente x_1 , le lieu de A_0 est une courbe C_{n+1} passant par X avec une tangente t_x telle que $(x' x'' x_1 t_x) = k$, pourvu que l'on ait $(x' x'' x_1 x) \neq k$; mais si $(x' x'' x_1 x) = k$, le lieu de A_0 est une courbe C_n qui rencontre x au point de contact de Σ avec le plan x. En effet, l'involution I_n est remplacée par une involution d'ordre n-1, Σ_{n+1} par une surface Σ_n d'ordre n qui ne contient x que si $(x' x'' x_1 x) = k$.

COROLLAIRE. — Si n = 2, on obtient la construction de Vietoris pour une biquadratique de seconde espèce à l'aide de trois coniques (Sitzungsberichte der Wiener Akademie, t. CXXV, 1916, p. 259; Loria, op. cit., p. 278; Mathesis, 1927-173, 1929-87).

Si n=3, on construit une C_5^2 à l'aide de deux coniques et d'une

¹ On peut comparer cette transformation à celles que nous avons étudiées pour la géométrie plane dans deux notes insérées dans Mathesis: Sur une courbe hyperharmonique de deux autres (1929-146), Sur la ligne anharmonique centrale de trois lignes données (1929-368).

cubique gauche. M. HJELMANN (loc. cit., pp. 9-11) l'établit pour k=-1 et étudie, pour k=-1, la génération réciproque, déjà traitée par M. BERTINI pour k quelconque dans le cas de la biquadratique gauche, et que nous allons généraliser.

19. — Une courbe C_n d'ordre n admettant les rayons d'un système réglé pour (n-1)-sécantes peut être regardée de ∞^2 manières comme la transformée anharmonique d'une courbe analogue C_{n-2} d'ordre n-2, relativement à deux coniques (ϖ') , (ϖ'') et à un coefficient k donné, différent de 1, de 0 et de ∞ .

Soient x, y et x_1 , y_1 les rayons unisécantes et les tangentes relatifs aux points d'appui X, Y de l'une quelconque s des ∞^2 bisécantes de C_n . Si on choisit X, Y de manière que x_1 , y_1 ne se coupent pas, il existe un ou deux couples de plans ϖ' , ϖ'' passant par s, et tels que l'on ait

$$s(\varpi'\varpi''x_1x) = s(\varpi'\varpi''y_1y) = \frac{1}{k}$$
.

La transformée anharmonique de C_n relativement à $\frac{1}{k}$ et aux coniques (ϖ'), (ϖ'') est, en vertu de ces égalités, une courbe C_{n-2} ne passant ni par X ni par Y (18); celle de C_{n-2} pour le coefficient k est une courbe C'_n tangente en X à x_1 , en Y à y_1 et qui contient les 2n-4 points de C_{n-2} dans ϖ' , ϖ'' . C'_n ayant 2n points communs avec C_n coïncide avec C_n car celle-ci, pouvant être engendrée à l'aide d'une correspondance (1, n-1) entre les deux systèmes de génératrices de la quadrique support, est déterminée par 2n-1 points.

Remarque. — A chacune des (n-2) (2n-5) bisécantes joignant deux des 2(n-2) points où C_n est tangente à une directrice du système réglé sont attachées ∞' de telles transformations car x et y_1 se coupent de même que y et x_1 ; les couples de plans ϖ' , ϖ'' engendrent deux faisceaux projectifs, de plans doubles xs, ys.