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SUR LE NOMBRE e.

PAR

M!le Hanni GREMINGER (Zurich).

Les lignes suivantes ! apportent une modification que je crois
nouvelle & la démonstration donnée par HErMITE 2 pour la
transcendance du nombre e. Je reprendrai et je suivrai la
démonstration d’Hermite jusqu’au point final, ou il s’agit de
prouver qu'un certain déterminant est différent de zéro; c’est
ce point essentiel que j’établirai d’une maniére entiérement
différente de celle d’Hermite.

La démonstration d’Hermite se base sur l'approximation
arithmétigue simultanée des nombres

e, e?, e, ... e" |

c¢’est-a-dire sur ’approximation de ces nombres par des nombres
rationnels de méme dénominateur. Hermite déduit cette approxi-
mation de I'approximation algébrigue simultanée des fonctions

c¢’est-a-dire de 'approximation de ces fonctions par des fonctions
rationnelles de méme dénominateur.

1. On obtient I'approximation algébrique en question en
partant de la formule

Kl

xM“e"“fe—“F (3)dz = e [F (0)a™ 4+ F/(0)2™! + ... + FM(0)]

0

— [F)a™ + F/v)a¥? o FM )], (1)

1 Extrait d’une conférence faite au séminaire mathématique de I’Ecole po.lytechnique
fédérale, le 17 mai 1930.
2 Charles HERMITE: Sur la fonction exponentielle, uvres (Paris, 1912), t. III, p. 150,
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ou F (z) désigne un polynéme quelconque de degré M et ou nous
prendrons plus tard v =1, 2, 3, ... n. On vérifie (1) par une
- application répétée de l'intégration par parties..

Le degré des polynémes en x au second membre de (1) s’abaisse,’
si F(z) a des racines multiples aux points =0 et z = v.
En tenant compte de ce fait, remplacons F(z) successivement
par les n 4 1 fonctions différentes suivantes:

Fo(2), Fy(2), Fy(a), o F, (3)

ou '
Fs(z)=zf(_i% (s=0,1,2,..n, (@)
fla) = z(z—1)(z—2) ... & —n) (3)

et ou p est un entier positif; F‘S (z) est alors de degré
M=pn+1 —1.
Avec ce choix de F(z) et en décomposant [en [ — [, la
0 0 v

formule (1) devient

xp,(n-l-i)evx Y N ,
p— of TR (2)dz = P,y (2) e — P, (x) (4)
ou
w(n+1) v X
x e -
Pole) = 7 fe ZZF (z) dz

Observons que les coefficients du polynéme P, (x) sont des
entiers, parce que multiples de certains coefficients du polynéme
F,(v + 2). " o

La fonction rationnelle P, (x) / Py (x) donne l’approxima-
tion algébrique de ¢ dont il a 6té question, les séries de Maclaurin
de P, (z) | Py(z) et de ¢ ayant les mémes coefficients jusqu’a
celui de z*™*1-! inclusivement. |
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2. On obtient I'approximation arithmétique de e, €2, ... " en
prenant = 1 dans (4). Cette formule donne pour x =1 et
Vo= 1, 2, 37 o R

Poe — Py = ¢
PSO e? — Ps:? = &5
(6)
PSO e — Psn = &
0oll nous avons pose
v A '< )1
e . o) ) _
Py =P = oy T = (7)
! . 21
55\. — ¢ /16—; f(") f(") - d= k8)
S e’ g — 8§ ’\(L — l}
0
(s =20,1,2,..n, ¢ = 0,1, 2, ...n),

(7) et (8) découlent de (2) et (5).

Les nombres P, sont des entiers. Les nombres :,, tendent
pers zéro pour p — oo comme le (v. — 1)ieme terme d’une série
exponentielle, voir (8). La fraction rationnelle P, / P, donne
Papproximation arithmétique de e¢” que nous allons utiliser.

3. Pour décider s1 e est algébrique ou transcendant, il s’agit
de voir s’1l est possible ou non d’avoir une relation de la forme
Ny + Nye + Nye2 + ... =N " =0 (7)
ou Ny, Ni, Ny, ... N, sont des entiers, qui ne sont pas tous nuls.

‘Multiplions les équations (6) par Nj, respectivement par
Ny, ... N,,, et ajoutons-les a 1’équation triviale

PxO — PsO = 0

multipliée par Nj. En supposant la relation hypothétique (?)
nous obtenons

PoNo = Py Ny oo £ PN = — (e Ny + e, Ny, + 0+ Ssn N9

Le premier membre représente un nombre entier quel que soit
Pentier positif u, qui est entré dans nos calculs par (2) et qui est

L’Enscignement mathém., 29¢ année; 1930. 17
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resté indéterminé jusqu’ici. Mais si w tend vers Pinfini, le second
membre de (9) tend vers zéro; dés que nous sommes assurés que
le module de ce second membre est inférieur a4 1, nous savons

qu’il est, étant entier, exactement égal & 0. Ainsi nous obtenons,
pour p suffisamment grand,

PNy + Py N, 4+ PN, .. + PN, = 0. (10) -

Nous pouvon$ prendre s = 0, 1, 2, ... n dans (10) et ainsi nous
obtenons un systéme de n + 1 équations linéaires et homogénes
pour les n + 1 entiers N, N;, ... N, , regardés comme inconnues.
Si nous savions que le déterminant

P (s, v=20,1, ..n) 11
| Ps, | (11)

de ces équations est différent de 0, les équations (10) ne posséde-
raient que la solution triviale zéro; une relation de la forme (?)
n’aurait lieu que pour Ny = N; = N, = ... = N,, = 0. Nous
démontrerons que le nombre e est transcendant en montrant
~ que le déterminant (11) est différent de O.

4. Sile déterminant (11) était'égal' a0, on po-urrait trouver des
constantes réelles u,, u,, u,, ... u,, qui ne seraient pas toutes
nulles, et qui satisferaient aux n + 1 équations qu’on obtient de

Py uy + Prtty + Py ug+ .. + P u, =0 (12)

en mettant _9 =0, 1, 2,’ ... n. Tenant compte de (7), nous pouvons
écrire (12), aprés avoir divisé par le facteur ¢ [ (w —1)!

Z

ooA -z ,," Uy u, - R ty . . |
fe.f(z)' oy M da=0 . (13).

(v = O,.1,A2, v n)

Nous considérons la fonction

'z

b(2) = [ f(z)* [39_ + gt et _n] ds -
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En vertu de (13) on a

(1)(0) — Q’(l) = (I)('Z) = ... = <I>(n) = 0

et en outre
lim @ (z) = 0 .

X =

Le théoreme de Rolle généralisé nous dit qu’il existe entre
les n - 2 zéros réels de la fonction continue ®(x) au moins
n - 1 zéros de sa dérivee:

u
. , u u n
D' () = — eV ()P L 2 L+
(%) () r =1 e —n]’

ces zéros de la dérivée étant différents des zéros de P(x):
0,1, 2, ...n, .

Le facteur ¢ f(z)* ne s'annule qu'aux zéros de ®(z); il faut
donc que le facteur restant

U
g W U

2 x— 1 L x—n

posséde tous ces n -~ 1 zéros intermédiaires. Il s’en suit, puisque
le numérateur de cette fonction rationnelle est au plus de
degré n, que

Uy Uy

| !

Wy |

r ax—1 Ty —n

i

et de cela on tire que nécessairement

uO == 1(1 = L., == ZL” - 0 .

On a done
‘P 1= 0,

P
¢’est-a-dire qu’une relation non triviale de la forme (?) est
impossible; e est transcendant.

I1 me reste encore a dire que cette démonstration, aussi simple
qu’elle soit dans le cas ou les exposants de e sont des nombres
réels, ne conduit plus au but pour des exposants complexes.
La méthode par laquelle Hermite a démontré que le déterminant
| P, ,| est différent de zéro est, au contraire, indépendante de
la réalité des exposants.
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