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SUR LE NOMBRE e.

PAR

Mlle Hanni Greminger (Zurich).

Les lignes suivantes 1 apportent une modification que je crois
nouvelle à la démonstration donnée par Hermite 2 pour la
transcendance du nombre e.Je reprendrai et je suivrai la
démonstration d'Hermite jusqu'au point final, où il s'agit de

prouver qu'un certain déterminant est différent de zéro; c'est
ce point essentiel que j'établirai d'une manière entièrement
différente de celle d'Hermite.

La démonstration d'Hermite se base sur l'approximation
arithmétique simultanée des nombres

e e2,e3,

c'est-à-dire sur l'approximation de ces nombres par des nombres
rationnels de même dénominateur. Hermite déduit cette approximation

de l'approximation algébrique simultanée des fonctions

c'est-à-dire de l'approximation de ces fonctions par des fonctions
rationnelles de même dénominateur.

1. On obtient l'approximation algébrique en question en
partant de la formule

v

xu+lè'xf e~xzF(z)dz evX[F(0)*M + F'(0).ïM_1 + + F<M> (0)]
0

— [F(v)a;M + F'(v)r*;M~1 + + F<M> (v)] (1)

1 Extrait d'une conférence faite au séminaire mathématique de l'Ecole polytechnique
fédérale, le 17 mai 1930.

2 Charles Hermite: Sur la fonction exponentielle, Œuvres (Paris, 1912), t. Ill, p. 150.
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où F(z) désigne un polynôme quelconque de degré M et où nous
prendrons plus tard v 1, 2, 3, On vérifie (1) par une
application répétée de l'intégration par parties.

Le degré des polynômes en xau second membre de (1) s'abaisse,
si F(z) a des racines multiples aux points — 0 et v.

En tenant compte de ce fait, remplaçons F successivement

par les n+ 1 fonctions différentes suivantes:

FoM. Fa(*), F,où

F (a) -MI (s 0, 1, 2, n) (2)
Z S

f(z) ?(a-l)(*-2) (z-n) (3)

et où a est un entier positif; Fs(z) est alors de degré

M p. (n+ 1) — 1

V 00 00

Avec ce choix de F (z)eten décomposant f en la
0 0 v

formule (1) devient

(ft _ a) / Fs (') d* pso (X) e"X - p« M (4)

où ^

U.(n+1) JX»V

(v) x*n + fW(v)/*-1 + + fW"+,H)(¥)
:

(p-1)!
(5)

(5 0, 1, 2, n,v 0, 1, 2, n)

Observons que les coefficients du polynôme Ps^(x) sont des

entiers,, parce que multiples de certains coefficients du polynôme
Fs(v + x)-

La fonction rationnelle P5v (x)/Ps0 donne l'approximation

algébrique de é'xdont il a été question, les séries de Maclaurin
de P5v(#) / Pfi0(z) et de é'x ayant les mêmes coefficients jusqu'à
celui de x^n+i)~l inclusivement.
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2. On obtient l'approximation arithmétique de e, e2, en

prenant x 1 dans (4). Cette formule donne pour x 1 et

v 17 2, 3, n
P,o e pu Li

P,0 - P,2 - S-2

(6)

Ps0 6n P.ç/i 6,s"n

où nous avons posé
pv /'» _

P. P (1) n—__ / e~" (7)
Av (u — 1) s — s

v

e, e'< /V VifL VMlV dz> (8)
ÄV J 2— S (a — 1)

0

(.ç 0, 1,2,...«, r 0 1, 2

(7) et (8) découlent de (2) et (5).
Les nombres PQ sont des entiers. Les nombres v tendent

ccrs zéro pour u —» ex» comme le (u — l)ième terme d'une série

exponentielle, voir (8). La fraction rationnelle PS/ / Ps0 donne

l'approximation arithmétique de e' que nous allons utiliser.

3. Pour décider si e est algébrique ou transcendant, il s'agit
de voir s'il est possible ou non d'avoir une relation de la forme

N0 + Nx e+ N2e2 + -f N;| ew 0

où N0, Nx, N2, Nn sont des entier,ne sont pas tous nuls.
Multiplions les équations (6) par Nx, respectivement par

N2, Nn, et ajoutons-les à l'équation triviale

P.v0 — PA0 0

multipliée par N0. En supposant la relation hypothétique
nous obtenons

Ps-o N0 + pfl Nx + -j- PiÇ/iN;l — (e.L -f es2 N2 + + g^NJ(9)
Le premier membre représente un nombre entier quel que soit

l'entier positif pi, qui est entré dans nos calculs par (2) et qui est

L'Enseignement mathém., 20e année; 1930. J7
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restéindéterminé jusqu'ici. Mais si (x tend vers l'infini, le second

membre de (9) tend vers zéro ; dès que nous sommes assurés que
le module de ce second membre est inférieur à 1, nous savons
qu'il est, étant entier, exactement égal à 0. Ainsi nous obtenons,
pour (jl suffisamment grand,

_ *

p,(A + Vi + p„Nt + + P,X 0 (10)

Nous pouvons prendre s0, 1, 2, dans (10) et ainsi nous
obtenons un système de n+1 équations linéaires et homogènes

pour les + 1 entiers N0, Nl7 Nn, regardés comme inconnues.
Si nous savions que le déterminant

|P,V| (s,V 0, 1, n) (11)

de ces équations est différent de 0, les équations (10) ne posséderaient

que la solution triviale zéro; une relation de la forme
n'aurait lieu que pour N0 Nx N2 Nn 0. Nous
démontrerons que le nombre e est transcendant en montrant
que le déterminant (11) est différent de 0.

4. Si le déterminant (11) était égal à 0, on pourrait trouver des

constantes réelles w0, u±1 zi2, qui ne seraient pas toutes
nulles, et qui satisferaient aux n+1 équations qu'on obtient de

i

P0v u0"t"Plv«l "t" P2v Uz•••P/iv ==: ® (^)

en mettant v 0, 1, 2, n.Tenant compte de (7), nous pouvons
écrire (12), après l'avoir divisé par le facteur ë' / ([x —-1)

-0
(v 0, 1 2 //)

(13)

Nous considérons la fonction

[t + Ä + - + r=ï] «-
> X ' '

" '
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En vertu de (13) on a

<1> (0) <I>(1) 'I>(2) <!>(") 0

et en outre
lirïi<ï>(&) 0

X OC

Le théorème de Rolle généralisé nous dit qu'il existe entre

les n+ 2 zéros réels de la fonction continue $ (x) au moins

n + 1 zéros de sa dérivée:

V M fir)I"— -i- 4-
11,1 ]' " ' [_ i;

'

X — 1
1 "" X — nJ

ces zéros de la dérivée étant différents des zéros de O (x) :

0, 1, 2, n,co
Le facteur e~xf(x)^ ne s'annule qu'aux zéros de $(#); 'il faut

donc que le facteur restant

ï'o uit i
u'n

Ii ' i

— n

possède tous ces n + 1 zéros intermédiaires. Il s'en suit, puisque
le numérateur de cette fonction rationnelle est au plus de

degré n, que
?<0

U,
0

x x — 1 x — n

et de cela on tire que nécessairement

Uq u1 un ==z 0

On a donc
P 1 0,s, v '

c'est-à-dire qu'une relation non triviale de la forme est

impossible; eest transcendant.
Il me reste encore à dire que cette démonstration, aussi simple

qu'elle soit dans le cas où les exposants de e sont des nombres
réels, ne conduit plus au but pour des exposants complexes.
La méthode par laquelle Hermite a démontré que le déterminant

Ps v' est différent de zéro est, au contraire, indépendante de

la réalité des exposants.
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