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SUR L'INDÉPENDANCE DES VARIABLES ALÉATOIRES

PAR

1. Kantorowicz (Varsovie).

Introduction.— M. Rajchman dans son Cours, professé à

l'Université de Varsovie, envisageait le Calcul des probabilités
comme un chapitre de la théorie générale des fonctions. Toute
variable aléatoire y était considérée comme la fonction d'une
ou de plusieurs variables indépendantes, dites variables de base

ou variables apparentes h Dans cet ordre d'idées Vespérance
mathématique d'une variable aléatoire se présente tout à fait
naturellement sous la forme d'une intégrale définie (qui se

réduit à une moyenne dans le cas courant des variables
discontinues), tandis que la probabilité elle-même n'apparaît que
beaucoup plus tard, comme une notion relativement compliquée.
La définition classique de l'indépendance de deux ou de plusieurs
variables aléatoires, intimement liée au théorème de la
multiplication dés probabilités, se prête mal à cette manière d'exposition

et M. Rajchman a posé à ses auditeurs la question suivante:
définir l'indépendance de deux ou de plusieurs variables aléatoires

en n'employant que la notion de Vespérance
Dans ce qui suit je donne une solution de ce problème, en

établissant des conditions nécessaires et suffisantes de l'indé-
y

pendanœ des variables aJéatôires.

i Par exemple le gain d'un joueur en jeu de roulette (variable aléatoire) était considéré
comme ld fonction du numéro qui sort (variable de base).
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1. Enoncés des théorèmes.

Je prouve notamment les théorèmes suivants:

I — Soitx, y, z, des variables aléatoires prenant respectivement

m, n. p, valeurs distinctes. Dans ces conditions pour
Vindépendance de ce système de il faut et il suffit que
Von ait:

W^y'z11H lk?||. ||y'||. \\z"\\ (1)

pour
.s* 0, 1 m — 1 ; t 0. 1, a — 1 ; 0, 1. — l ;

x [I désigne ici V espérancemathématique de la valuable aléatoire x.
Dans le cas de deux variables aléatoires seulement l'équation (1)

pour s — 0 et t quelconque (ainsi que évidemment pour t — 0

et 5 quelconque) est une tautologie Dans le cas de trois variables
les équations du système (1), correspondant respectivement à

5 — 0, t0, u — 0 expriment l'indépendance des variables
x, y, s deux à deux.

Notre énoncé met ainsi bien en relief la différence de la notion
de l'indépendance des variables aléatoires deux à deux et leur
indépendance tout court.

II. — Si l'on supprime la restriction relative au nombre de

valeurs, que prennent x, y, z, on retombe sur le théorème
connu 1: pour qu'ait lieu V indépendanced'un système des variables
aléatoires x, y, z, il faut eiilsuffit que

l|s'Vz'...|| \\É-\\sp\\•••

pour toutes les valeurs entières positives ou nulles de m, n, p.
Remarque. — Les lois de probabilité attachées aux variables

x, y, z, doivent être ici supposées absolument continues, sans
quoi la définition classique de l'indépendance par l'application
du théorème sur la multiplication des probabilités deviendrait
inutilisable.

i Ce théorème peut-être n'a pas été énoncé explicitement, mais il est un corollaire à
peu près immédiat du théorème classique des moments.
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III. — Si Vonsuppose les variables aléatoires x, y, z, non
négatives, pour leur indépendance il faut et il suffit, que
suivante :

11^^.^11 11^11.11^11.11^11...

soit remplie pour m, n, p, aussigrands que Von veut.
Donc dans ce cas m,n,p, n'ont pas à prendre toutes les

valeurs entières, mais ils peuvent faire partie quelle
suite de valeurs réelles (entières ou non) indéfiniment croissantes.

2. — Démonstrations.

Nous nous bornerons à démontrer les théorèmes dans le cas
de deux variables aléatoires. La démonstration dans le cas

d'un nombre plus grand se fait absolument de la même manière
et ne présente aucune difficulté nouvelle.

Démonstration du théorème I. — Appelons

pk la probabilité de l'égalité x— ak 1, 2, m)

ql » » » y'1,2, n)

r (k, l) la probabilité pour que l'on ait en même temps x ak

et y bt.
Supposons que les ak sont tous différents, ainsi que les bv

Posons
z[k l) r [k l)

L'indépendance de xet de ys'exprime par le système d'égalités

e(*f l)0 '
(/.* 1. 2, m ; 'J, 2, n) (2)

Pour toute valeur de s et de on a évidemment les identités
suivantes :

m n

ii^H 2^*b* • .U/H 2^ • (3)

k= i i

En particulier:
m n

• N°!i 2^ 1 • l,2/°1! 2^= 1
• (4)
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On a de même :

S„x y

n nt

22r(** l)a'*bt>

1=Z 1 k= 1

n m

[z (fi,l) + pk qt] aSk l)\

l— 1 k= 1

n m

£ (k ' a\+Il^11 • Il2/'Il * (^)

1= 1 A"= 1

£°2/'li Il2/*Il
> Il^2/°Il ll^ll • (6)

Si l'on rapproche les conditions (1) des identités (5) et (6),
on trouve que le problème se ramène à étudier l'équivalence du

système (2) au système d'équations linéaires suivant:

n m

L—1 k= l

(.s- 0, 1, 2. m— 1 ; 0, 1, 2, ..il — 1)

Il est bien évident que (2) entraîne (7).
Pour prouver la réciproque, posons:

m

*(' • s) 2 V ' (8)

k— 1

Le système (7) prend alors la forme :

fi

"S^bïzil, s)0 (t 0, 1, n - I) (9)

1= 1

Pour un ^ fixe, le système (9) peut être envisagé comme un
système d'équations linéaires à n inconnues:

z(l s) z(2,.s) z(n — 1 s) z s)

Le déterminant de ce système est évidemment le déterminant
de Vandermonde égal à

II "'X - ''<>

h zjti
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Les bx étant tous différents, ce déterminant est manifestement
différent de zéro. Par. conséquent on déduit de (9)

z(l, s)0 (/== 2, // ; s 0, m — 1) (10)

En rapprochant ceci de la définition (8), on est amené au
système d'équations en e(&, l):

m

^ e (/<,l)ask 0 (s 0. 1, m — 1) (11)

k—\

Le déterminant de ce système est encore un déterminant de

Vandermonde représenté cette fois par

TT (aA — aù

h^i

et, par conséquent, différent de zéro. On a donc pour toute
valeur de ketde l:

e(£, l) 0 c.q.f.d.
0

Démonstration du théorème II. — Soient respectivement

a bb a

J* f(x)dx ; 9 (y) dy et // ^ (# • y)dxdy
—00 -«GO — 3© —00

les probabilités des inégalités :

x a \ 5^

et du système dë deux inégalités simultanées :x^a et

Il s'agit d'établir l'équivalence de l'égalité

4» (« » y)f(x)?(v) (12)

et du svstème :
/

-(-00 +00 + X + CO

jfxmf(x)dxfy"t(y)dy— «I« (13)

—00 — 00 —CO —X /

(»1=0.1,2,3,...; 0, 1, 2. 3,
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Pour m, n 0 l'équation (13) est une tautologie.
Le passage de (12) à (13) est immédiat. Il ne s'agit donc que

du passage inverse. Pour l'effectuer, posons:

c(x, y)— è(x.o(y) (14)

L'équation (13) revêt alors la forme suivante

-Lac -foc -fx — X

f fx'" y" t{x y) dx dy fy" dy fx" t(x y) dx 0

-oc — oc — x—x

En appliquant le théorème des moments 1 à la fonction
suivante de y:

-f- zc

Çxn h (x
— 00

on trouve, quel que soit y:

+ ÛC

J'xmî(x, y) dx— 0 0 1, 2, 3,

— ce

Ce qui nous donne, par une nouvelle application du théorème
des moments:

s (x y) 0 c.q.f.d.

Démonstration du théorème III. — Lemme I (fondamental).
Soit A(x) une fonction continue-croissante (au sens strict) et non
négative dans V intervalle(a, b) et soit f(x) une fonction continue
dans cet intervalle. Nous affirmons que Végalité

b

Ç [A (x)]'1 f(x) dx0 (15)
t/
a

supposée remplie pour n aussigrand que Von entraîne
comme conséquence :

f(x)— 0 pour a É x A h (16)

i A savoir que toute fonction continue à moments tous nuls est forcément égale à
zéro.
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Démonstration.Supposons, par impossible, que l'équation (16)
n'ait pas lieu pour tous les points de l'intervalle Nous
distinguerons deux cas: 1° f(b)^0, 2° — 0.

Commençons par montrer l'impossibilité du cas 2°. Dans ce
cas il est possible de déterminer les points et tels que l'on ait :

f(x) 0 pour <! ^
f(x) 9^ 0 pour ^ < ;

la fonction f (x)garde le signe constant dans (d, c). Sans
restreindre la généralité, nous pouvons supposer que ce signe est

positif [dans le cas contraire nous aurions pris —f(x) au lieu
de /(#)]. Soit a le point où f(x) atteint son maximum relatif
à (d, c). Posons

/'(a) — 2 e

Il existe alors un intervalle (g, h)1 tel, que l'on ait :

f(x) ^ s pour <£ ^ (17)

En rapprochant les formules (15) et (17), en posant

B n(x)=on trouve

d g hb

fB„ (x) dx + fBn(x) dx+f Bn (x) dx + f Bn(x)dx 0 (18)

a d S h

Puisque les quantités

g b

f B„ (x) dx et f B„ [x) dx
d h

sont positives, on peut écrire:

d h.

J Bn (x)dx+ f(x)dx<0 (19)

a g

i On a évidemment :

a^d<sr<a</i<c^5
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On a évidemment

h h h

f (x) dx f [A (a?)]'* f(x) dx>£ j* [A (a?)]" dx >£ [A (£•)]" — g)

Lt tr vc

(20)

En désignant par M le maximum absolu de f(x) x, on a:

d

fB,» dx

a

d

f [> (x)Tfdx

a

< M [A (e?)]" (d — a) (21)

En rapprochant les inégalités (19), (20) et (21), on trouve

c'est-à-dire
lHs)T (/l —s) <M [A(^)]"(^ ~ '

AM
LA A)

M d
< - a

h oft r>

(22)

Puisque, par hypothèse, on a

d <C g et. par suite
A (g)
A (d) > 1

le premier membre de l'inégalité (22) tend vers l'infini avec
tandis que lé second membre reste constant, ce qui est manifestement

absurde. Notre démonstration de l'absurdité de l'hypothèse
2° est ainsi achevée. En ce qui concerne l'absurdité de l'hypothèse

1°, elle est encore plus manifeste. Pour l'établir on n'a
qu'à reprendre le raisonnement de tout à l'heure en y
introduisant quelques simplifications.

Il suffit de supposer la non-existence du point et de l'égalité
h c.

Lemme II (analogue au théorème des moments). — Toute

fonction continue f (x), remplissant pour n grand que Von

veut, V équationdes moments

+ cc

yv dx 0 (23)

est nulle identiquement.

1 C'est-à-dire le maximum relatif à (a, b) tout entier.
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Remarque. — Pour éviter le malentendu possible nous rappelons

encore une fois que n parcourt une suite indéfiniment
croissante de quantités réelles, positives, d'ailleurs absolument
quelconque.

Démonstration. Posons x tang z. •

L'équation (23) devient alors

'

• ic

/l"»e*)"öS!U 0

3=0

Appliquant le lemme I aux fonctions: tang z (fonction
croissante) et ^tanf^ (fonction continue), on trouve

COS Z /
f(x) EE 0 c.q.f.d.

Pour démontrer le théorème III nous n'avons qu'à répéter
la démonstration du théorème II. Les seuls changements à y
introduire sont le remplacement de la suite de tous les nombres
naturels par une suite croissante réelle arbitrairement donnée
et la mise du lemme II à la place du théorème des moments.

Varsovie, 25 mai 1929.
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