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AGREGATION DES SCIENCES MATHEMATIQUES (1928)

CAaLcurL DIFFERENTIEL ET INTEGRAL.

Caleul différentiel et intégral (7 heures). — /. Sotent x = x(u, V),
y = vy (u, v), z = 2 (u, v) les coordonnées rectangulaires d’un point
d'une surface S exprimées a Uaide de deux parametres indépendants,

uetv,et
ds? = Edu? 4+ 2Fdudyv + Gdy?

Uélément linéaire de S. Ecrire que les courbes u = Ct® sont des lignes
géodésiques de S. On vérifiera que la condition obtenue peut étre exprimée
uniquement au moyen de ¥, G et de leurs dérivées premiéres.

11. Pour que la surface S, représentée par les équations
X = U cosy , y = u siny z = z(u, v)

soit coupée par les cylindres u = C' suivant des géodésiques, il faut
et 1l suffit que z satisfasse a une équation aux dérivées partielles du
second ordre (A;).

Posant
0z

n g

30 = ¥ F (2)
former Uéquation (A,) vérifiée par la fonction t (u, v); déterminer
Uexposant n et la fonction f (t) de maniére que les coefficients de (A,)
sotent indépendants de t; sout (Aj) U'équation ainst obtenue.

Soit (A,) Uéquation que Uon déduit de (As) en premant v comme
fonction, t et u comme variables indépendantes ; chercher les solutions
de (A,), qui sont de la forme

v = T(t) + U(u) et v = T(t) Ulu) .

Indiquer les différentes formes qu’elles revétent lorsqu’on n’emploie
que des fonctions et des paramétres réels, et signaler leurs dégénéres-
cences. Déterminer les fonctions z (u, V) correspondanies.
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I11. Pour que la surface S représentée par les équations
T = wcosycoso , y = ucosysing , z = wusiny ,

ou @ est une fonction de u et de v, soit coupée par les sphéres u = Cte
sutwant des géodésiques I', il faut et il suffit que ¢ (u, v) satisfasse a une
équation aux dérivées partielles du second ordre (E). Chercher les
solutions de (E) de la forme ¢ = U (u) + V (v); soient 2 les surfaces

correspondant & ces solutions: dorénavant on se limitera & Uétude des
surfaces 2.

Posant

% ©
logu =t log tg <—/— -+ —-) _ T, -— = tgw ,
+

on montrera que la détermination des surfaces 2 revient & Uintégration
d’une équation différentielle du premier ordre, aux variables © et o, soit:

dw .
_? = kK (0), ".') (F>

sutvie d’une quadrature. [On posera F (0, 0) = a.]

a. Construire les courbes intégrales C de (F) en sardant d'une
représentation graphique préliminairel; en déduire la représentation

d’une géodésique I' sur le plan (=, ©). Les courbes y sont de deux espéces
différentes, celles de 1% espece, y,, ayant une infinité de points singuliers
M, et celles de 2™ espece, -, en ayant seulement un nombre fini.

Vers quelles limites 1 et A tendent les différences

T — T A = — @
n n ‘n—-1 ‘n n Vn—1

entre les coordonnées homologues de deux points consécutifs My,
M, d’une courbe y, quand n croit indéfiniment ?

Caractériser, sur une surface X, les courbes v.= G€ et montrer que,
sur une méme surface 2, les courbes I' sont semblables.

Soient A les trajectoires orthogonales des courbes I' appartenant a
une méme surface X; construire les itmages 0 des courbes A dans le
plan (z, o).

b. Soient Ay et A, deux courbes A rencontrant la géodésique fixe
I'° en m® et m2, et la géodésique variable I' en m, et m, respectivement.
En sappuyant sur les expressions des arcs de géodésiques par des
intégrales définies portant sur des fonctions bien déterminées de w et ,

1 Pour I'étude des branches infinies on ne demande qu'une discussion basée sur le
graphique; mais il sera tenu compte des précisions que I'on pourra fournir en s’appuyant
sur la théorie des équations diff¢érentielles.
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prises enire des limites =5, 3 (et 71, 15), et en utilisant (F), établir que

/\ . .
la variation de Uarc mym, de I' est nulle; on a ainsi:

TN RS
my,my, = m{mg . (e)

Ne pourrait-on reirouver Iéquation (e) en mettant Uélément linéaire
de 2 sous la forme

ds? = do® + Gdi® ?

Calculer Uexpression explicite de o en fonction de t, w et .

Déterminer la courbure totale de 3 et rechercher si elle tend vers une
limite au voisinage de o07.

N. B. — On pourrait traiter b avant a.

SOLUTION
PAR

M. Bertrand GAMBIER.

N. B. — Certaines parties, aisées, du probléme sont traitées succinc-
tement.

1. — On annule le produit symbolique
tp by Aa b# By %i F G
oV oy oy ou ou ou
I = 1
¥z oy oz ox dy 0z dx d’x _dx dix )
avt a9 oyl oy 0¥ 0y | dudv: TovovE
0G o F 0G
FOZ _9go™ S
oy ov T Gbu . (2)
_ F 2 2
ds? — ’\/de—{——:du -+ E——-E- du? . (3)
VG ¢

, e = I . :
L’expression de = V/ Gdp + " du est différentielle exacte ;
¢ = const est Péquation des trajectoires orthogonales des géodésiques
u = const.

L’Enseignement mathém., 28¢ année, 1929. 16




	Calcul Différentiel et Intégral.

