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AGRÉGATION DES SCIENCES MATHÉMATIQUES (1928)

Calcul Différentiel et Intégral.

Calcul différentiel et intégral (7 heures). — I. Soient x x(u, v)y

y y (u, v), z z (u, v) les coordonnées rectangulaires d'un point
d'une surface S exprimées à l'aide de deux paramètres indépendants,
u et v, et

ds2 Edu2 + 2 F dudv + Gdv*

l'élément linéaire de S. Ecrire que les courbes u Cte sont des lignes
géodésiques de S. On vérifiera que la condition obtenue peut être exprimée
uniquement au moyen de F, G et de leurs dérivées premières.

II. Pour que la surface S-l représentée par les équations

x — u cos v y — u siu v z z(u v)

soit coupée par les cylindres u Cte suivant des géodésiques, il faut
et il suffit que z satisfasse à une équation aux dérivées partielles du
second ordre (Ax).

Posant
n rl \— llnfit)

former l'équation (A2) vérifiée par la fonction t (u, v); déterminer
l'exposant n et la fonction f (t) de manière que les coefficients de (A2)
soient indépendants de t; soit (A3) l'équation ainsi obtenue.

Soit (A4) l'équation que l'on déduit de (A3) en prenant v comme
fonction, t et u comme variables indépendantes; chercher les solutions
de (A4), qui sont de la forme

v — T (t) + U (u) et e T (t) U (u)

Indiquer les différentes formes qu'elles revêtent lorsqu'on n'emploie
que des fonctions et des paramètres réels, et signaler leurs dégénérescences.

Déterminer les fonctions z (u, v) correspondantes.



240 B. GAMBIER

III. Pour que la surface S représentée par les équations

x U COS C COS © y — U cos v sin z u Sin e

où <p est une fonction de u et de v, so/i coupée pctr les sphères u Gte

suivant des géodésiques T, il faut et il suffit que y(u, y) satisfasse à une
équation aux dérivées partielles du second ordre (E). Chercher les
solutions de (E) de la forme <p U (u) + V (v); soient 2 les surfaces
correspondant à ces solutions: dorénavant on se limitera à Vétude des

surfaces 2.
Posant

log Ut log tg 0. + -0 T tg «

on montrera que la détermination des surfaces 2 revient à V intégration
d'une équation différentielle du premier ordre, aux variables - et m, soit :

~ F (m t) (F)

suivie dune quadrature. [On posera F (o, o) » a.]
a. Construire les courbes intégrales G de (F) en s'aidant dune

représentation graphique préliminaire1 ; en déduire la représentation

y dune géodésique F sur le plan (-, y). Les courbes y sont de deux espèces
différentes, celles de lre espèce, ayant une infinité de points singuliers
Mn, et celles de 2me espèce, ym en ayant seulement un nombre fini.

Vers quelles limites 1 et k tendent les différences

Ifi "n n—1 ' Gi ¥n
®

n—1

entre les coordonnées homologues de deux points consécutifs Mn„i?
Mn dune courbe y1 quand n croit indéfiniment

Caractériser, sur une surface 2. les courbes v — Gte et montrer que,
sur une même surface 2, les courbes F sont semblables.

Soient À les trajectoires orthogonales des courbes F appartenant à

une même surface 2Ü; construire les images § des courbes A clans le

plan (r, <p).

b. Soient et A2 deux courbes A rencontrant la géodésique fixe
r° en m° et m°, et la géodésique variable F en m1etm2 respectivement.
En s'appuyant sur les expressions des arcs de géodésiques par des

intégrales définies portant sur des fonctions bien déterminées de et r.

i Pour l'étude des branches infinies on ne demande qu'une discussion basée sur le

graphique; mais il sera tenu compte des précisions que l'on pourra fournir en s'appuyant
sur la théorie des équations différentielles.
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prises entre des limites Tï, -â (et t1? t2J, e* en utilisant (F), établir que

la variation de Varc mpiig de T est nulle; on a ainsi:

mt m2 — (e)

iVe pourrait on retrouver Véquation (e) eft mettant Vélément linéaire
de 2 sous la forme

ds2 d Œ2 + Ç^2

Calculer Vexpression explicite de <7 eft fonction de t, go et t.
Déterminer la courbure totale de 2 e£ rechercher si elle tend vers une

limite au voisinage è oz.
N. B. — On pourrait traiter b avant a.

SOLUTION

PAR

M. Bertrand Gambïer.

N. B. — Certaines parties, aisées, du problème sont traitées succinctement.

1. — On annule le produit symbolique

bx by bz
b v b v b v

b2 x b2 y b2z
bt>2 ôT2 ôT2

b# by bz
b 11 bu bu

bx by bz
b v ö v bv

g bx b2x gö#ö2#
b u b v2 b b bv2

' — — 2G— + 0
b v b v bu

ds2 (y Gdv+ —~ + — ^)du*

(<)

(2)

(3)

L'expression du Vbdv -| —du est différentielle exacte;y G
<7 const est l'équation des trajectoires orthogonales des géodésiques
u — const.

L'Enseignement mathém., 28e année, 1929.
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2. -

E 1 + M2 F — — G «,« + (îiY (1)
\ÖM/ ÖW ör \bvj 1 '

9 /ÖJ3\2 02 Ö22"+Uj-"^^ ° <Ar>

— «'7(0 -f «"/"— (2)
öc ' w öv2 ' ör w

ÖS _
1 + «2"-2/'2

0« un^r'li' öf

(3)

Myht_ + l + «2"~V2 07 + /ö£\2[(« — 2) (i + «v"~V2)r'l
z"2«2

/b/y [" (» 2) (i + »''"TO/"]
\0l7 L K2"-'/'3 J

(A2)

1 _j_ ^2n~2 f2
JJ2

doit donc être indépendant de t ; cette expression est

de la forme T, + UT<>; U doit donc être constant; on écrit

n 1 f CV1+ T2fSh (C + D) (4)

où C, D sont des constantes arbitraires; on peut, restreindre,
prendre C i, D 0.

fSh tVÎT? Ch t (5)

/ôA2ôi ft2<

"fc)ö7 + ^2-0-

Changement de variables et fonction

M"i> '1) Ö '1 (6)

^ öG d£
^

ö£ 5cx
d Mj_ d m ö v d //j

^
d tt
ÖL öy öL

ö £ 1 ö £ ÖMj
ö v ö ^ d m ö t'j

0*7 0^7

(8)
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La dérivation de la seconde équation (7) en donne

_ô72
(9)\*h) itl

bV A /A x

—2 + M— 0 (AJ
d t bu

On se rappellera d'après (2) et (3), puis (6), (7), (8)

bz Ch t ni bvt bz Gl— G h t —- — —u oh t
bu ùs>

\bï>)

I dz (Ch t — 4- u Sh t — J du + u Sh t — dt
\ bt bu) bt (10)

ds*=[« ch t^dt+ (sh « g + « ch t d«] + [i + (^) ] d«2

(J\ i» ?N o \ ô V
Sh t h u Ch t—) du + u Ch t—<

ö t bu J bt
^ 7

• dt

Toute solution [v (u, t), z (u, £)] est accompagnée de la nouvelle
[v + e0, z + zol' 014 zo son^ des constantes arbitraires (mouvement
de verrou d'axe Oz, évident a priori j. La forme homogène de A4 relativement

aux dérivées de v prouve que si v (u, t) est une solution [jointe
à z (u, t) fournie par la quadrature (10) î, on a une nouvelle solution
kv (u, t), kz (u. t); la relation entre les deux surfaces solutions simultanées

S u cos v u sin v z-

Sj u cos kv u sin kv kz

est aisée à définir géométriquement, mais difficile à prévoir a priori.
La substitution u — eu' fournit

u' ö2c bv
11e h? + si?= 0 (As)

qui montre que remplacer u' par u' + u'0 (ou u par u0 u), où u'01 u0
sont constants donne une nouvelle solution: homothétie par rapport
à Vorigine (évident a priori). Chaque surface solution 2 fournit en
général co4 surfaces nouvelles 2t: les surfaces particulières que l'énoncé
fait découvrir sont celles pour lesquelles les 4 paramètres de transformation

rentrent les uns dans les autres: les surfaces en feu ne donnent que
co3 nouvelles solutions pour chacune.

Si on prend v T + U, on peut (rotation autour de Oz) ajouter à
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T une constante arbitraire, et à U une autre (indépendante de la

première); (A5) prouve que T" et - ont la même valeur constante;
si cette constante n'est pas nulle on a, sans restreindre,

T ~ a (t — t0)2 U 2a log u

x ~ u cos \a[(t — t0)2 — 2 log u] j z '2au[(t — t0) Ch t — Sh t] (11)

y u sin | a[(t — t0)2 — 2log w] j i 2au[(t — t0) Sh t — Ch t]

Remplacer u par hu (h constant! revient à composer, dans un ordre
arbitraire, une homothétie par rapport à l'origine, de module h, et
une rotation de l'angle 2 log h autour de Oz dans un sens convenable;
deux courbes u — const de la même surface sont donc semblables;
la surface elle-même zst donc semblable à celles qui en dérivent par rotation

autour de Oz et possède donc go1 transformations en elle-même

du type indiqué plus haut. Si la valeur commune de T" et

est nulle, on a le cône

x — u cos at y — u sin at z — au Ch t cr au Sh t (12)

T" U'm
En cherchant les solutions v TU, on voit que tjt et —^— ont

la même valeur constante; si cette constante est nulle, on retrouve le
cône; si cette constante est non nulle, on distingue deux cas, suivant
qu'elle égale a2 ou — a2; on peut d'ailleurs multiplier U par une
constante quelconque et T par la constante inverse. On a donc pour
T" — a2T avec a2 ^ 1

> (keat + Be~at) ira2

au,,1-a2
Z [{Xeat — Be~at) Ch t — a(Aeat + Be~at) Sh t]I a2U \ (13)

1—a2au1 a

a£
[(Aea( - Be""') Sh { — a+ Be-"') Ch

Si a2 1, on peut se borner à 1, d'où

^ _ Ae' + Be'

Ae2'— Be"2' B + A
z (A — B) log u + — t (14)

Ae2' + Be-2' A — B
3 4 — _ (A + B) log u



AGRÉGATION DE MATHÉMATIQUES (1928) 245

Pour T" — — a?T on a

p (A cos at + B sin at) ua

au^ + a*

z y [« (A cos #£ -f- B sin Sh t + (B cos at — A sin at) Ch t] (l§)

au} + a*

<j \a (A cos at + B sin at) Ch £ -f (B cos at — A sin at) Sh £]
1 + az x

Les surfaces (Ah, Bh, a), (A, B, a) (Tun même type sont homothétiques

par rapport à Vorigine, le point (ku, t, y) de la première correspondant
au point (u, t, v) de la seconde : or remplacer (A, B, a) par (Aft, Bft, a)
revient à effectuer la transformation de (e, z) en (fte, ftz), donc à

changer 2 en une surface 21 qui peut aussi se déduire de 2 par une
simple homothétie; 2 admet donc oo1 transformations en elle-même de

l'espèce indiquée plus haut.

3. — Une surface 2 en donne, en général, oo4 autres: homothétie
relative à Vorigine, et déplacement arbitraire autour de 0. Les solutions
9 U + V sont celles pour lesquelles une rotation autour de Oz équivaut

à une homothétie: cela tient à ce que 9 se réduira à ~log u + V(e), où

a est constant ; les courbes u — const, sont semblables entre elles sur une
telle surface (raisonnement déjà fait). On a

ds2 du2 -f- irdv2 + «2 cos2 p T— du -f — dp 1
[(H* öc J

E E 1 + u2cos?p(--\ F u2 cos2 p — (1)\ÖUJ ö u ÖP

U~ + U" COS P

Bornons-nous aux solutions (je modifie légèrement les notations de
V énoncé)

9 j* U du + Ydp (2)

U u [Y cos2 p (— Y2 cos p sin p ~j~ VY' cos2 p)

~f~ (t + "V2 cos2 v) (2Y cos p sin p — Y' cos2 v)] (3)

-j- (1 -j- Y2 cos2 y)2 0
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Uw est une constante, non nulle, que nous appellerons — ; on a

Punique équation

Y cos2 c(— Y2 cos v sin v -f- Y Y ' cos2 c)

+ (I -f- Y2 cos2 r) (2Y cos c sin v — Y' cos2 v) (4)

+ a(t + Y2 cos2 c) 0

On a d'ailleurs

dv e2v — 1 2er
— a T Sill V — COS C =x (5)

cos c e -f- 1 e2x + 1

1 /»
® — log u 4- / tg to d~t Y cos c tg to (6)

V cos2 c — V sin c cos c (1 -j- lg2 to)

Y' cos2 c sin c tg to + (1 + t,g2 to)

(7)

dto rt e — 1
/r,%— h ^ tgoj Fdl cos2 to _J_ 1

6 v '

On doit prendre pour « une intégrale déterminée de (F); <p s'obtient
ensuite par la quadrature (6), qui introduit une rotation arbitraire
autour de 0?; il n'y a donc que deux constantes de forme: a, puis la
constante introduite par le choix de l'intégrale &>(t) de F. On a ensuite

(u cos c cos v sin to \2 /_ cos2 c cos2 to\ _ ,^vds2 dz h du + 1 4 — du2 8

\ cos to a J \ a" j
w cos c sin to ôa cos v sin to öer u cos v

a — — (9)
a bu a öt cos to

et l'on constate que (F) peut s'écrire

cos c d /cos v sin to\

cos to dz \ a J

Les trajectoires orthogonales À des géodésiques F ont pour équation
en termes finis

u cos c sin to C (10)

où ro est l'intégrale go(t, a) qui a été choisie pour obtenir 2; G est une
constante arbitraire; les propriétés demandées par l'énoncé sous la

rubrique b pour la variation de l'arc mxm2 ou le calcul de la longueur
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de cet arc sont classiques; deux trajectoires orthogonales Ax, A2
interceptent sur les diverses géodésiques T une longueur d'arc
constante, égale à | a (G-, — C2) j; il est nécessaire, pour la rigueur, que la
fonction <j et ses dérivées premières restent régulières dans les limites

d'intégration et que la dérivée ^ ne s'annule pas; on reconnaît ainsi

que les valeurs w kn + ^ sont à examiner; nous verrons qu'elles

correspondent à un rehaussement de T sur 2 ou de son image y sur le

plan (t, y). La valeur cos v — 0 qui annule d'ailleurs ~ et ~ correspond

aux points qui seraient sur Or.: nous verrons que la surface 2
s'enroule asymptotiquement autour de Or, ainsi que chaque courbe
sphérique géodésique T.

L'équation des courbes r est u — u0 0, ou

ç + (10)
(l t/

Les diverses courbes y du plan (t, y) ne diffèrent donc que par une
translation parallèle à l'axe des y et tg « est précisément la pente de la
tangente à y dans ce plan (t, y); les trajectoires orthogonales A ont
pour équation finie l'équation (10), mais leur équation différentielle
est dt7 0 ou d'après (9),

da d ts m to j- 0 (11)
au cos to v '

En vertu de

1
du sin to dz

d<.p f-
au cos to

cette équation revêt la forme

sin to d® -f cos to dx ——— 0 (12)
u cos v x '

Gela prouve que dans le plan (r, y) les courbes 9 peuvent s'obtenir
par la quadrature d<p — Çcot (ùdz, où &> est, bien entendu, toujours
l'intégrale particulière de F adoptée pour définir 2; ces courbes à
(comme les courbes y) ne diffèrent les unes des autres que par une translation

parallèle et l'axe des y; de plus, elles sont les trajectoires orthogonales
des images y ; le réseau (T, A) orthogonal sur 2 reste orthogonal

dans la représentation de 2 sur le plan (t, y) : c'est le seul, la représentation
n'étant pas conforme; d'ailleurs on Vérifie aisément que le ds2

de 2 prend la forme

ds2 — u2[cos2 v(do2 + do2) -f (dy — tg to dx)2] (13)
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Les points des diverses courbes y correspondant à w — kit (k entier)
et répartis sur une même parallèle à l'axe des y donnent une droite
manifestement trajectoire orthogonale des courbes y: on a, sur cette
droite, dz 0, sin w 0 de sorte que l'équation (12) est bien vérifiée,,
en même temps que l'équation finie (10), G étant nulle; nous verrons
que les courbes d admettent ces droites pour asymptotes, de sorte que
chacune de ces asymptotes peut, en quelque sorte, être regardée
comme une enveloppe spéciale de courbes $, enveloppe correspondant
à une translation infinie de l'une des courbes $. La courbe particulière
A ainsi obtenue est sur un cône de révolution d'axe Oz. L'équation
différentielle des courbes y

d® cos co — sin to dx 0 (14)

est vérifiée pour dz — 0, cos w 0, mais le raisonnement analogue
est en défaut; la droite correspondante, parallèle à l'axe des <p, est
un lieu de points de rebroussement des courbes y ; bien qu'elle soit en
même temps une enveloppe de courbes y, la courbe correspondante de

2, située encore sur un cône de révolution d'axe Oz, n'est pas sphérique
et est une arête de rebroussement de 2, de sorte qu'il n'y a pas lieu
de considérer cette courbe comme une géodésique.

Pour calculer la courbure totale k d'une surface 2, rappelons la
formule classique relative à un élément linéaire:

ds2 d^ + C2du2 (15)

1 b2C

~ci? ' (16)

Si l'on écrit ds2 da2, + &du2, on trouve aisément

1 AU
4 &2\d

* J_/lÉY__L5!f (i6')' 7

a J 2 & da2

Ici on a
a cosz V COS" CO

IM& 1 + 2~ (17)

et nous devons, pour appliquer la formule, faire le changement de
variables et fonction

/ \ / \ " cos c sin co
U Ut T EEr CT1) <J(M, t) — — (18)

Quelle que soit la fonction A(u, z) on a
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Öd U COS V • _ /mOn a donc, en se rappelant ~ —
cQS

ainsi que 1 equation (fi)

2 r cos v sin v cos w 1 /9a\— I + COS V Sill 03 I • [*v)
öa au t a JÖC

En appliquant à la formule (19) on trouve

ö2<g —
ö a2 au

COS'

[cos2c
cos2 03 — sin2 c sine sin 03

^
1

a cos 03 J

fsin
e cos 03 I2

+ sin w 1

« J

a2u2 1 +
cos2 e cos2 03 \2

a' )"

cos2 c cos2 w— sin2 v> sin 03

sine + a

+ ^7 1 • (22>' cos'2 e cos'2 03 x

a

#«2^1 +

Si 2 contient un point, ou bien situé sur Oz et autre que 0, ou bien
infiniment rapproché d'un tel point, cos e est ou nul ou infiniment
petit, sin ç étant infiniment voisin de s (s — ± 1), donc k a même
limite, quand on se rapproche de ce point, que l'expression

— 1
£ iff 03 + a

*• — <28>

et tout est ramené à trouver la limite de tg w pour sin v tendant vers
+ 1 ou — 1, c'est-à-dire pour r augmentant indéfiniment par valeurs
positives ou négatives. Cette question sera élucidée plus bas.

Nous avons maintenant à construire la courbe C correspondant à

l'intégrale choisie pour (F); changer simultanément a et m de signe
ne change pas (F), donc on peut se borner à a > 0; les surfaces 2 et 2'
correspondant à (a, w) ou (— #, — 00) sont symétriques l'une de
l'autre par rapport à un plan contenant Oz. De même changer
simultanément de signe et ~ est indifférent pour (F) et revient à faire
tourner 2 autour de Oz, puis à en prendre la symétrique relativement

au plan xOy ; de la sorte l'intégrale co qui détermine 2
peut être suivie de 0 à + co ce qui donne une nappe 21?

puis de 0 à « — go ce qui donne une nappe 22; pour 22
on peut remplacer l'intégrale rJ)1 qui a donné 2t par l'intégrale &>2

issue dans le plan (&>, du point B de l'axe des « symétrique par rapport
à l'origine du point A qui détermine wl7 puis suivre co2 de 0 à

r + co ; de la sorte nous pouvons nous borner dans ce qui suit aux
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valeurs positives de r. Nous devons maintenant étudier les valeurs

co kiz + ~ qui sont des pôles du second membre de (F)

1
a + Sln CO COS CO

d to e1' + t

di

Le changement go kn + ^ + £ donne

d t
d e e~~ i a

sin e cos s

(F)

-(! + -
èl~+ 1 (24

r7 /* COS £ £^ /»£ö?£
tg,u + -)</E

idz
+

de sorte que l'on a les développements en série suivant les puissances
de c, avec rayon de convergence non nul :

t-t' £ + - (25)

La courbe C présente donc au point (t', + -j) un point

flexion ordinaire avec tangente parallèle à Faxe des m; la courbe y
présente au point (t', <p') un rebroussement de première espèce avec

tangente parallèle à Faxe des o ; la courbe d issue de ce même

point (t'$ <f') donne

//» sin £ £2
_ /* £3

7

col co d~ I (1 + ...We — / —We -f- •••J cos £ cl Ja
<26>

£ £rf

cp_© =7 h.-. T — T — 7T h •••' 4a oa

d'où les coordonnées paramétriques

o — ©' —- + ••• 1 — *' t- + ••• • (27)
4 a Sa

Au point (r', a/) la courbe $ a sa tangente parallèle à l'axe des t,
quatre points communs étant réunis au point de contact. On remarquera,

pour la courbe y, que les valeurs go kn donnent une tangente
parallèle à Faxe des r, mais pour S une asymptote parallèle à Faxe des <p;
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pour la courbe G une telle valeur donne un point où la tangente a pour

pente a; il est utile d'avoir on trouve

(Et*
d

'to /2ö sin to sin v \ /a sin c sin to cos to\ t „ 4 /00,— — 1 — : 4- cos2 c Iff to (28)
T2 \ COS3 to COS2 to/ \ COS2 to /

d? to
de sorte qu'au point w /ctt étudié pour C la valeur de —r^~ se réduit

a ösmc ou a-^r-
+ 1

Ces résultats généraux établis, il y a trois cas à séparer :

1
n

1 l
« > 2 0<«<- «

2
•

Premier cas: a > ^. — Dans ce cas, ^ est constamment positif,

non nul, car
d to a +'sinv sin to cos (o

dz cos2 to

Si nous prenons, sur G, m comme variable indépendante, considérons
les valeurs successives de « et t

7Z 3 7C _ 7T _ 7t
w) y ' "n" » ••• (2/l — l)ô" ' (2w + l)*ô »

L L ù L
(30)

x) T0 • "l - v, > x«

Nous ne sommes jamais arrêtés pour suivre la variation de t par
d\
dlcontinuité, étant toujours bornée et positive. On a

<-=//« cos2 Iii d m

4* sin v sin to cos to

2
cos2 to d (o /» cos2 to d to

(31)

/cos" to d (o /»

« à + « 4- sin to cos to
0

Donc les nombres m dépassent toute limite finie quand n devient
très grand ; t croît donc au delà de toutes limites en même temps que
tn (tous les deux par valeurs positives); au point t ^rn-i, nn — la
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courbe G commence tangentiellement à la droite 7 rn-i et se termine

tangentiellement à la droite 7 zn au point ^7n, nn y)» au P0"^
de cet arc où m — mx et jusqu'au point final, la concavité est tournée

vers les « positifs (formule 28), mais sur l'arc partant de ^7n-i,

et terminé au point où &> mt, la concavité d'abord tournée vers les

m négatifs doit changer de sens, de sorte qu'il y a, sur cet arc, au moins
un point d'inflexion intermédiaire. Si yn_1, <pn sont les valeurs de <j>

correspondant à 7n-i> rn, les points (Tn-iî <fn-1)? (^n? 9n) de y sont
deux points de rebroussement consécutifs; la formule (31), jointe au
résultat obtenu que rn croît au delà de toutes limites par valeurs
positives, prouve que

lim„=00 K, — V-l) f 2 COS2 ti) d to

lim„=oo (?«—?„-!) /
a + sin to cos <

2 cos to sin to d to

u a + sin to cos to

7

©

(32)

Fig. 1.

On posera tg w u, et la méthode des résidus donne

$
\ V'1»2 —1 /

©
V4 a2 — 1

(33)
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0 est positif, $ négatif; à mesure que n grandit les arcs de G ou y
compris entre t Tn-i, et r tn tendent de plus en plus à devenir
égaux aux arcs que définiraient les formules

rcos2 to dtû f* cos to sin o) dto
o — / (34)

a + Sln 03 cos ' J a A sln cos w

la première définissant, par une quadrature, une courbe (r, w),
l'ensemble des deux donnant paramétriquement une courbe (t, 9). Quant
aux courbes S, les valeurs 0, 7r, 2tt, mr, de co fournissent une
asymptote parallèle à l'axe des 9, la distance de deux asymptotes
consécutives tendant vers la limite 0. Pour chaque valeur constante
donnée àw, on a sur 2 une géodésique F tendant asymptotiquement
d'un côté vers le point de cote u sur Os (t + 00), de l'autre côté
vers le point de cote (— u), (t — go); en suivant les spires de cette
géodésique T, tg &> repasse indéfiniment par toutes les valeurs comprises
entre — 00 et + go de sorte que la courbure totale de 1 (formule 23)
ne tend vers aucune limite; F présente une infinité de rebroussements

obtenus pour co k-rc -f ~ ; l'arc de F correspondant à l'intervalle

(Tn-1, Tn) est égal à ~ (cos cn + cos en_i) ou

u / 2exn-\ 2exn \
a 1 e2xw +1/

la longueur totale de la géodésique F est exprimée par une série de
même nature que donc convergente (Dalembert). La figure 1

représente la courbe G, puis une courbe y et une courbe S; le déplacement,

parallèlement à l'axe des 9, du couple y, $ donnerait le système
orthogonal (y, d).

Deuxième cas : 0 < a < ~. — On se rappellera les résultats généraux

indépendants de la valeur numérique de a. Il est indispensable de
séparer les régions du plan (r, &>) (en se bornant comme nous l'avons
montré à t > 0), où est positif ou négatif. Nous construisons donc

la courbe (A) d'équation, dans le plan {&>, ~) où l'on doit tracer G,

e2x — 1
a i 0 Sln f-° cos co 0 (35)

e + 1
K '

On peut écrire 2a sin 2a, 2a étant un angle aigu positif; (35)
s'écrit donc

62t _L_ lsin 2 a> — sin 2 a —— (35')
— 1

K '
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La courbe (A) comprend une infinité de branches se déduisant les

unes des autres par une translation égale à 7r, parallèle à Taxe des go;
la figure 2 n'en représente que deux; la branche inférieure du dessin

admet la droite go — — pour axe de symétrie, pour asymptote les

droites m — — a et go — ^ + a et est tangente à la droite (T)

1 1 -j- sin 2a (iz a\
T

2
L 1- sin 2a lL COt (î - 2)

au point go — — ~ ~ est positif dans la région P de (A) contenant

l'axe des go, nul sur (A), négatif dans la partie complémentaire N.

Gela posé, soit une courbe G, suivie à partir du point où elle perce
l'axe des r,>, point situé dans P. A partir de ce point et t croissent
tous deux tant que l'on n'arrive pas en un point de la courbe (A);
de deux choses Vune: ou bien, en suivant G (la théorie des équations
différentielles permet d'obtenir des arcs successifs, tous analytiques), on
ne rencontre jamais (A), ou bien on la rencontre en un point M ; dans
le premier cas, puisque m et t croissent constamment, les arcs successifs
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conduisent à un point limite à distance finie ou infinie ; ce point limite
ne peut être à distance finie, car il n'y a pas de points singuliers à

distance finie pour G (le rôle des valeurs w — nn + y a été expliqué)

et en tout point régulier à distance finie on peut prolonger analytique-
ment G; donc le point limite est à Vinfini] (A) par sa forme empêche

que le point limite soit à l'infini dans une direction autre que l'axe
des go ou l'axe des t; si le point s'éloignait à l'infini dans la direction
de l'axe des go, il y aurait une asymptote (go et r allant constamment

en croissant) située à gauche de T, ^ aurait pour limite l'infini, ce

qui est impossible, le numérateur de a + sin c sin go cos go restant

fini, tandis que le dénominateur cos2 go oscillerait indéfiniment entre 0

et 1 ; donc la seule hypothèse admissible est que le point s'éloigne à

l'infinidansda direction de l'axe des r; comme go va constamment en

croissant, il y a une asymptote, donc ^ a pour limite zéro, ce qui

entraîne que go tende vers une limite égale à —-a + kn ou — + a + &tt,

k étant un certain entier. On a marqué sur la figure des formes de
courbes G correspondant à cette hypothèse (il faudrait d'ailleurs
serrer de plus près encore la discussion pour montrer que cette hypothèse

est effectivement réalisée, ce qui est d'ailleurs le cas).
Il y a donc à examiner l'autre alternative: G rencontre A (hypothèse

réalisable, puisque G est déterminée par un point initial choisi ad

libitum); comme par une translation égale à kiz et parallèle à l'axe
des o) la courbe G reste intégrale et donne la même surface 2, on peut
supposer le point de rencontre M situé sur la branche supérieure de
(A) dans la figure 2; en M la tangente à G est horizontale et M correspond

à un maximum de go (r) ; à partir de M, t continue à croître et
go à décroître; nous ne pouvons plus retraverser la branche en jeu de
(A) dans la figure 2, car un point de rencontre ne pourrait manifeste-

ment s'obtenir que sur l'arc de A compris entre la droite go -r et la
*dt

droite j + oc; de nombreuses contradictions en résulteraient, car,

en ce point on aurait ^ — 0, < 0 [formule (28), ^ se réduit à

cos2 e tg go ou
^ ^2

tg &>], de sorte que ^ négatif immédiatement

avant le point de rencontre devrait décroître et continuer à décroître ;
mais, atteindre la valeur zéro oblige au contraire ^ à croître ; par
suite, en reprenant le raisonnement sur les prolongements successifs de
la courbe C, la branche en jeu ne peut que devenir asymptote à la droite

2 + oc, en restant toujours au-dessus de la branche de (A) asymptote
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à cette droite [tandis que plus haut nous avons trouvé la possibilité
7C

d'arcs d'une courbe G asymptotes à cette droite co — + oc (ou

+ a + kn) et situés en dessous de Vasymptote, ou d'arcs de G asymptotes

aux droites co — oc + ki: situés en dessous de Vasymptote en jeu
et au-dessus de la branche en jeu de (A)"]. Le dessin représente diverses
formes de courbes G, correspondant à une même valeur de

a(^o < a < Entre l'axe des co et la droite (T), la limitation
inférieure de (tn — Tft-i) donnée par la formule (31) s'applique et ce

résultat, joint à la présence de la courbe A, prouve bien que chaque
courbe G ne peut maintenant présenter qu'un nombre fini de points

co de cote co ~ + krc (inflexion verticale pour G), de sorte que y,

elle aussi, ne peut avoir, comme T, qu'un nombre fini de points de
rebroussement; sur toute courbe G, t devient égal à + oo et co égal

à — oc ou y + öl (à kiz près) quand on s'éloigne à l'infini sur la courbe G ;

donc pour les courbes y correspondant au choix de G, il y a une

direction asymptotique faisant avec l'axe des r l'angle —oc ou a

suivant le cas; reconnaître s'il y a une asymptote à distance finie
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semble plus difficile. La surface 2 s'enroule encore asymptotiquement

autour de Oz; pour la géodésique T la latitude v tend vers + -, le

point se rapproche du point de cote u de 0z, tandis que la longitude

<j> augmente indéfiniment; l'arc de T compris entre le dernier

point de rebroussement et le point atteint asymptotiquement est fini
II COS l'

et égal à ou —, t0 étant la valeur correspondant au
a r~° +l

dernier rebroussement; la courbure totale de 2, en se rapprochant
col^ oc

de ce point de Oz, est d'après la formule (23) voisine de —• ou

—^§-- suivant que la valeur limite de co est — a ou —f a (à &7T

près). La ligure 3 donne la forme des courbes y ou à.

i 1
Troisième cas : a -j. — Il reste enfin à parler du cas a — ;

dans ce cas, comme dans le premier (^a > w est une fonction croissante

de t: on a, pour C ou y une forme analogue à celle de ce premier
cas, sauf cette fois que les différences rn—-in-1 ou cpn— augmentent
au delà de toutes limites quand n augmente indéfiniment: les valeurs

1
calculées pour 0 et <]>, dans le cas a > —, laissent prévoir ce résultat;
mais pour ne pas allonger, je ne donne pas de démonstration; la
surface s'enroule asymptotiquement autour de Oz et la courbure
totale n'a pas de limite quand on atteint asymptotiquement un point
de Oz.

L'Enseignement mathém., 28e année; 1929. 1.7
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