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AGREGATION DES SCIENCES MATHEMATIQUES (1928)

CAaLcurL DIFFERENTIEL ET INTEGRAL.

Caleul différentiel et intégral (7 heures). — /. Sotent x = x(u, V),
y = vy (u, v), z = 2 (u, v) les coordonnées rectangulaires d’un point
d'une surface S exprimées a Uaide de deux parametres indépendants,

uetv,et
ds? = Edu? 4+ 2Fdudyv + Gdy?

Uélément linéaire de S. Ecrire que les courbes u = Ct® sont des lignes
géodésiques de S. On vérifiera que la condition obtenue peut étre exprimée
uniquement au moyen de ¥, G et de leurs dérivées premiéres.

11. Pour que la surface S, représentée par les équations
X = U cosy , y = u siny z = z(u, v)

soit coupée par les cylindres u = C' suivant des géodésiques, il faut
et 1l suffit que z satisfasse a une équation aux dérivées partielles du
second ordre (A;).

Posant
0z

n g

30 = ¥ F (2)
former Uéquation (A,) vérifiée par la fonction t (u, v); déterminer
Uexposant n et la fonction f (t) de maniére que les coefficients de (A,)
sotent indépendants de t; sout (Aj) U'équation ainst obtenue.

Soit (A,) Uéquation que Uon déduit de (As) en premant v comme
fonction, t et u comme variables indépendantes ; chercher les solutions
de (A,), qui sont de la forme

v = T(t) + U(u) et v = T(t) Ulu) .

Indiquer les différentes formes qu’elles revétent lorsqu’on n’emploie
que des fonctions et des paramétres réels, et signaler leurs dégénéres-
cences. Déterminer les fonctions z (u, V) correspondanies.
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I11. Pour que la surface S représentée par les équations
T = wcosycoso , y = ucosysing , z = wusiny ,

ou @ est une fonction de u et de v, soit coupée par les sphéres u = Cte
sutwant des géodésiques I', il faut et il suffit que ¢ (u, v) satisfasse a une
équation aux dérivées partielles du second ordre (E). Chercher les
solutions de (E) de la forme ¢ = U (u) + V (v); soient 2 les surfaces

correspondant & ces solutions: dorénavant on se limitera & Uétude des
surfaces 2.

Posant

% ©
logu =t log tg <—/— -+ —-) _ T, -— = tgw ,
+

on montrera que la détermination des surfaces 2 revient & Uintégration
d’une équation différentielle du premier ordre, aux variables © et o, soit:

dw .
_? = kK (0), ".') (F>

sutvie d’une quadrature. [On posera F (0, 0) = a.]

a. Construire les courbes intégrales C de (F) en sardant d'une
représentation graphique préliminairel; en déduire la représentation

d’une géodésique I' sur le plan (=, ©). Les courbes y sont de deux espéces
différentes, celles de 1% espece, y,, ayant une infinité de points singuliers
M, et celles de 2™ espece, -, en ayant seulement un nombre fini.

Vers quelles limites 1 et A tendent les différences

T — T A = — @
n n ‘n—-1 ‘n n Vn—1

entre les coordonnées homologues de deux points consécutifs My,
M, d’une courbe y, quand n croit indéfiniment ?

Caractériser, sur une surface X, les courbes v.= G€ et montrer que,
sur une méme surface 2, les courbes I' sont semblables.

Soient A les trajectoires orthogonales des courbes I' appartenant a
une méme surface X; construire les itmages 0 des courbes A dans le
plan (z, o).

b. Soient Ay et A, deux courbes A rencontrant la géodésique fixe
I'° en m® et m2, et la géodésique variable I' en m, et m, respectivement.
En sappuyant sur les expressions des arcs de géodésiques par des
intégrales définies portant sur des fonctions bien déterminées de w et ,

1 Pour I'étude des branches infinies on ne demande qu'une discussion basée sur le
graphique; mais il sera tenu compte des précisions que I'on pourra fournir en s’appuyant
sur la théorie des équations diff¢érentielles.




TUR R s s S

AGREGATION DE MATHEMATIQUES (1928) 241
prises enire des limites =5, 3 (et 71, 15), et en utilisant (F), établir que

/\ . .
la variation de Uarc mym, de I' est nulle; on a ainsi:

TN RS
my,my, = m{mg . (e)

Ne pourrait-on reirouver Iéquation (e) en mettant Uélément linéaire
de 2 sous la forme

ds? = do® + Gdi® ?

Calculer Uexpression explicite de o en fonction de t, w et .

Déterminer la courbure totale de 3 et rechercher si elle tend vers une
limite au voisinage de o07.

N. B. — On pourrait traiter b avant a.

SOLUTION
PAR

M. Bertrand GAMBIER.

N. B. — Certaines parties, aisées, du probléme sont traitées succinc-
tement.

1. — On annule le produit symbolique
tp by Aa b# By %i F G
oV oy oy ou ou ou
I = 1
¥z oy oz ox dy 0z dx d’x _dx dix )
avt a9 oyl oy 0¥ 0y | dudv: TovovE
0G o F 0G
FOZ _9go™ S
oy ov T Gbu . (2)
_ F 2 2
ds? — ’\/de—{——:du -+ E——-E- du? . (3)
VG ¢

, e = I . :
L’expression de = V/ Gdp + " du est différentielle exacte ;
¢ = const est Péquation des trajectoires orthogonales des géodésiques
u = const.

L’Enseignement mathém., 28¢ année, 1929. 16
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2. -
022 0z 0z 0z\?
E=1 b B e s — u? =
=1+ (w) P=222 0 6=y <M> (1)
9 03 2 032 022
u (E) e llg—;g;;a— (Al)
E—?— = u" 913 e ’E_t_ !
X% = & fU) va f Dy (2) :
0z 14 w2 r2 (3) |
ou ,,_1f,bt
o
(%ﬁ)z_b_t . 1 + u'2n:2 fz bzz " ?—f 2 (” _’2)/'+ (1 4 ui"'2f2 f’/
v/ ou luzuzn 1 dv Qv uf uin
(As)

1 m-2pp : :
_i_ft_,‘__f doit donc étre indépendant de ¢ ; cette expression est
2 P p

de la forme T, 4+ UT,; U doit donc étre constant; on écrit
n=1 f =CA1+f f= Sh(Ct+ D) (4)

ou G, D sont des constantes arbitraires; on peut, sans restreindre,
prendre C =1, D = 0.

f=Sht A/l + f2= Cht (5)
dt\20t 02 ¢
114 (g;) —b—’—t + -O—v‘z = O & (A3)

Changement de variables et fonction

U= u, = v (uy, ) t(u, v) =1, (6)
0 = _btl — ﬂ 9_?.6()1
T duy; T du oV 0 U,
(7)
— 8 _ 0% aby
Y A ov oty
0%
ot 1 ot ou
— = — = — —1. (8)
oy vy ou ovy
ot o,
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La dérivation de la seconde équation (7) en ¢, donne

b2t dv dt d%y
0 = < 1_) + - (9)
2y dy
- =0 . A
o2 + “au (A4)

On se rappellera d’aprés (2) et (3), puis (6), (7). (8)

Cht bvl EE:: uSht

bu b bt Y
o

= <Cht— + u Sht——)du + ubht——dt

D o ov e ov 2
L oy oy 0y , oy 2
§2 — [u Chtbt dt + <Shtbt + u Chtou>du] + [1 . n <bt> ]du

oy oy X%
do = (Sh t-b—z + u Chtg-g‘)du + u Chta dt

Toute solution [¢ (u, t), z (u, t)] est accompagnée de la nouvelle
[0 + ¢4, 2 + 2,], Ot v, et 2z, sont des constantes arbitraires (mouvement
de verrou d’axe Oz, évident a priori). La forme fiomogéne de A, relative-
ment aux dérivées de ¢ prouve que si ¢ (u, ¢) est une solution [jointe
& z(u, t) fournie par la quadrature (10)!, on a une nouvelle solution
kv (u, t), kz (u. t); la relation entre les deux surtaces solutions simul-
lanées

by U cos vy usiny z

Y, wucoshkv usinkv kz

est aisée a définir Oeometrlquement mais difficile & prévoir a prwrz
La substitution u = e*' fournit

u=-e — + — =0 (Ag)

qui montre que remplacer u’ par u’ 4+ u, (ou u par u,u), o u,, u,
sont constants. donne une nouvelle solution: homothétie par rapport
a Uorigine (évident a priort). Chaque surface solution X fournit en
général o surfaces nouvelles 3, les surfaces particuliéres quel’énoncé
fait découorir sont celles pour lesquelles les 4 paraméires de transforma-
tion renirent les uns dans les autres: les surfaces en jeu ne donnent que
3 nouvelles solutions pour chacune.

Sion prend ¢ = T -+ U, on peut (rotation autour de Oz) ajouter &
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T une constante arbitraire, et & U une autre (indépendante de la pre-

R " U A
miére); (Ag) prouve que T" et ont la méme valeur constante:

du’
st cette constante n’est pas nulle on a, sans restreindre,

T = a(t —t,)? U = 2alogu

X = U cos ‘ al(t — t,)? — 2log u] z = 2au[(t —t,) Cht — Sh¢] (11)

]
§
y = usinja[(t — 1) — 2logu]} & = 2au[(t — t,) Sht — Ch]

Remplacer u par iu (h constant) cevient & composer, dans un ordre
arbitraire, une homothétie par rapport & Porigine, de module A, et
une rotation de 'angle 2 log h autour de Oz dans un sens convenahle;
deux courbes u = const de la méme surface sont donc semblables;
la surface elle-méme est donc semblahle + celles qui en dérivent par rota-

tion autour de Oz et posséde donc ! transformations en elle-méme
— dU

du type indiqué plus haut. Si la valeur commune de T” et —

est nulle, on a le cone

r — ucos at y = usinat z = auCht ¢ = ausSht . (12)

T — Ulu
T ¢ g
la méme valeur constante; si cette constante est nulle, on retrouve le
cone; si cette constante est non nulle, on distingue deux cas, suivant
qu’elle égale a? ou — a?; on peut d’ailleurs multiplier U par une
constante quelconque et T par la constante inverse. On a done pour
T” = a?T avec a2 21

ont

En cherchant les solutions ¢ == TU, on voit que

v = (Ae” + Be)u ™

1—-a?
au Vg i t -
s = [(Ae* — Be ™) Cht — a(Ae* 4+ Be™™) Sh] (13)
' aul—“2 ¢ { :
¢ =i [(Ae* — Be ™) Sht — a(Ae™ 4 Be %) Chi]

Si a? = 1, on peut se borner a a = 1, d’ou

Ael 4+ Be™
[ S——
u
Ae* — Be™ B+ A
z—_—:(A—B)logu+ ¢ i ¢ —; t (14)

Ae? + Be 2 A—B
A T 2

|

t — (A 4 B) logu
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S

Pour T = — a*T on a

[ v = (A cos at + B sin az) u®

14+ ad '
au % : . .
7 == T a [a(A cos at + Bsinat)Sht + (Bcos at — A sin at) Ch ¢ (15)
aulT® ) .
=1 ag[a(Acos at + Bsinat)Cht + (B cos at — A sin at) Sh ]

Les surfaces (Ah, Bh, a), (A, B, a) d’'un méme type sont homothétiques
| par rapport & Dorigine, le point (ku, t. v) de la premiére correspondant
| au point (u, t, v) de la seconde : or remplacer (A, B, a) par (A%, Br, a)
revient a effectuer la transformation de (¢, z) en (ke, kz), donc a
changer X en une surface 2, qui peut ausst se déduire de 2 par une
simple homothétie; X admet donc ! transformations en elle-méme de
Pespéce indiquée plus haut.

3. — Une surface X en donne, en général, % autres: homothétie
relative a Uorigine, et déplacement arbitraire autour de O. Les solutions
¢ = U 4 V sont celles pour lesquelles une rotation autour de Oz équivaut

a une homothétie : cela tient & ce que ¢ se réduira & Py log u + V(¢), ou

a est constant: les courbes u = const. sont semblables entre elles sur une
telle surface (raisonnement déja fait). On a

: 979 0 0 2
ds® = du® + u?dv? 4+ u?cos?y [Sjo— du + Oi dv]
u v

; do 2 00 00
4 E =1 4+ ulcos?y¢y(—- F = u?cos?y-—L —L
du QI dy

(1)

3 ) do \?
= u? u?cos®y | -
G I 2 2 b‘

(%

Bornons-nous aux solutions (je modifie légérement les notations de
Uénoncé)

o = f Udu + Vdv | (2)

Uul[V cos?y(— VEcosvsiny 4+ VV’/ cos? v)

R T O R IO

+ (1 + V?cos®¢) (2V cos v sin v — V' cos? ¢)] (3)
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1
Uu est une constante, non nulle, que nous appellerons Lsona
I'unique équation
Vecos?v(— VZcosvsiny + VV’cos?y)
+ (1 4 VZcos?v)(2V cosysiny — V' cos?y)  (4)
+ a(l + VZcos?v) = 0 .

On a d’ailleurs

d 2‘:_ ) ,7T
S d= siny = © ! cosy = e (5)
CcOSs v 821 + 1 821 + 1
1 .
cp:zlogu -}—ftgwdr Veosy = tgw (6)
T 2 . g Ao
V/cos?v — Vsinycosy = (1 4+ tg 0))2_:

Vicos?v = sinv tgw + (1 4+ tg2o) j—w

T

dow a e —1
dt = costo + R 1 tgo . (F)

On doit prendre pour » une intégrale déterminée de (F); ¢ s’obtient
ensuite par la quadrature (6), qui introduit une rotation arbitraire
autour de Oz; il n’y a done que deux constantes de forme: a. puis la
constante introduite par le choix de 'intégrale w(t) de F. On a ensuite

: 2 2 2
ds? — <u cos vdr n cosvsmwdu> n (1 n cos? v cos co) du® (8)

92

COos w a 2
U cOoSs ¢ Sin w oG cos v sin w oG iU cos ¢ (9)
g = —_—— e ——— —_—
Qa ou a 0T CcOS w

et I'on constate que (F) peut s’écrire

(F')

cos w d= a

cos ¢ d <cos y sin w)

Les trajectoires orthogonales A des géodésiques I' ont pour équation
en termes finis

wcosy sinw — C (’10)

ou m est I'intégrale (7, @) qui a été choisie pour obtenir X; C est une
constante arbitraire; les propriétés demandées par I’énoncé sous la

/\
rubrique b pour la variation de I'arc m;m, ou le calcul de la longueur

e Y
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de cet arc sont classiques; deux trajectoires orthogonales A,, A,
interceptent sur les diverses géodésiques I' une longueur d’arc cons-
tante, égale & | a (G, — C,)|; il est nécessaire, pour la rigueur, que la
fonction o et ses dérivées premiéres restent régulicres dans les limites

. . , .+, 0C Xp L5
d’intégration et que la dérivée — ne s'annule pas; on reconnait ainsi

s & . 9
que les valeurs 0 = kn + 3 sont a examiner; nous verrons qu elles

correspondent & un rebroussement de I' sur 2 ou de son image y sur le
plan (7, ¢). La valeur cos ¢ = 0 qui annule d’ailleurs g-s et g—% corres-
pond aux points qui seraient sur Oz: nous verrons que la surface X
s'enroule asymptotiquement autour de Oz, ainsi que chaque courbe
sphérique géodésique T.

L’équation des courbes I' est u — u, = 0, ou

q;:lg—i—lfi’—{—ftgmdt. (10)

Les diverses courbes y du plan (z. 9) ne différent donc que par une
translation paralléle ¢ Uaxe des ¢ et tg o est précisément la pente de la
tangente @ y dans ce plan (z, 9); les trajectoires orthogonales A ont
pour équation finie I’équation (10), mais leur équation différentielle
est de = 0 ou d’aprés (9).

ety 25 g (11)
au COS W
En vertu de
du sinw d=
do = — 4 200 0F
au COosS w
cette équation revét la forme

. do

sinw do + cosw dt = = 0 . (12)
i COSsS ¢

Cela prouve que dans le plan (z, ¢) les courbes ¢ peuvent s’obtenir
par la quadrature dg = — feot w dt, ot.w est, bien entendu. toujours

Vintégrale particuliére de F adoptée pour définir 3: ces courbes o
(comme les courbes y) ne différent les unes des autres que par une trans-
lation paralléle a Vaxe des o ; de plus, elles sont les trajectoires orthogo-
nales des images vy ; le réseau (I', A) orthogonal sur 3 reste orthogonal
dans la représentation de X sur le plan (z, ©).: Cest le seul, la représen-

tation n’étant pas conforme; d’ailleurs on vérifie aisément que le ds?
de 2 prend la forme

ds® = u*[cos®¢(d1® + do?) + (d9 — tgw dt)?} . (13)
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Les points des diverses courbes y correspondant & w = krn (k entier)
et répartis sur une méme paralléle & axe des ¢ donnent une droite
manifestement trajectoire orthogonale des courbes y: on a, sur cette
droite, dr = 0, sin w = 0 de sorte que ’équation (12) est bien vérifiée,
en méme temps que ’équation finie (10), C étant nulle; nous verrons
que les courbes ¢ admettent ces droites pour asymptotes, de sorte que
chacune de ces asymptotes peut, en quelque sorte, étre regardée
comme une enveloppe spéciale de courbes 9, enveloppe correspondant
a une translation infinie de 'une des courbes d. La courbe particuliére
A ainsi obtenue est sur un cone de révolution d’axe Oz. L’équation
différentielle des courbes y

do cosw — sinw dt = 0 (14)

est vérifiée pour dr = 0, cos w = 0, mais le raisonnement analogue
est en défaut; la droite correspondante, paralléle a Paxe des o, est
un lieu de points de rebroussement des courbes y; bien qu’elle soit en
méme temps une enveloppe de courbes y, la courbe correspondante de
2, située encore sur un cone de révolution d’axe Oz, n’est pas sphérique
et est une aréte de rebroussement de X, de sorte qu’il n’y a pas lieu
de considérer cette courbe comme une géodésique.

Pour calculer la courbure totale & d’une surface X, rappelons la
formule classique relative & un élément linéaire:

ds? = dqo* + C2du® (15)
1 2C
k= — =~ —— .
C 00.2 (16)

Si ’on éerit ds? = de? + &du?, on trouve aisément

A‘:J—<9§ 2—~~Lié—é . (16"
462\ do 26 da?
Icion a , '

& — 1+ cos2y (ioszm (17)

a’

et nous devons, pour appliquer la formule, faire le changement de

variables et fonction

i cos v sin
u = u, v =T(uy, 9 o, )= p = = g . (18)

Quelle que soit la fonction A (u, 7) on a

_. 0gy 03 0T,
BT 0T 0ay
24 (19)
dA dA v, 0T
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oG wcosv . . 5, . :
. — = ainsi que équation (F)
On a done, en se rappelant — P q q (
?_@ _ _2_ cos ¢ sin v cOS w 4 cos v sin (’)J . (20)
e} at a

En appliquant a ?g la formule (19) on trouve

2& — 2[cos?y cos?2w — sin?y sin ¢ sin w
& [o 4o (21)

da au? a - cosw

sin v cos w

2
cos?yl ———— ;- sinw
a
k= D) 2 2
o g cos?y cos?w
a*u*(1 +

al
2y . sinw
— sin ¢
a cos w

. cos?2v cos?w
au?{1 +

2

cos?y cos?w — sin

(22)

a

Si ¥ contient un point, ou bien situé sur Oz et autre que O, ou bien
infiniment rapproché d’un tel point, cos ¢ est ou nul ou infiniment
petit, sin ¢ étant infiniment voisin de ¢ (¢ = + 1), donc &k a méme
limite, quand on se rapproche de ce point, que 'expression

— 1
T elgw 4 a
o = (23)

au?

et tout est ramené a trouver la limite de tg » pour sin ¢ tendant vers
+ 1 ou — 1, ¢’est-3-dire pour r augmentant indéfiniment par valeurs
positives ou négatives. Cette question sera élucidée plus bas.

Nous avons maintenant & construire la courbe C correspondant a
Pintégrale choisie pour (F); changer simultanément a et w de signe
ne change pas (F), donc on peut se borner @ a > 0; les surfaces 2 et 3’
correspondant a (@, w) ou (— @&, — ) sont symétriques l'une de
I'autre par rapport & un plan contenant Oz. De méme changer simul-
tanément de signe o et = est indifférent pour (F) et revient a faire
tourner 2 autour de Oz, puis & en prendre la symétrique relative-
ment au plan 20y; de la sorte l'intégrale w(z) qui détermine X

peut étre suiviedez = 0 & 1 = + o, ce qui donne une nappe 3,

puis de 1t =0 & 7 =-—©, ce qui donne une nappe 2,; pour 3,
on peut remplacer lintégrale w; qui a donné 3; par lintégrale m,
issue dans le plan (@, 7) du point B de 'axe des w symétrique par rapport
a Porigine du point A qui détermine w,;, puis suivre w, de 7 = 0 &
T = -+ o0 de la sorte nous pouvons nous borner dans ce qui suit aux
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valeurs positives de . Nous devons maintenant étudier les valeurs

w =kt + % qui sont des poles du second membre de (F)

e — 1
p a -+ — l SIn w Cos w
W en-- + /
dt cos?w ’ (F)
Le changement o = kn + :) -+ ¢ donne
dt sin’ ¢ &2
;[E - 621—_1 ::;l_(l + ...)
a — 2————-sins coSs ¢
e’ 4 1 (24)
— cos ¢ ¢? ede
- L {§ d == —— ’l d —_ — —
? v/'gu N sin ¢ a( et Ll a +

de sorte que I'on a les développements en série suivant les puissances
de ¢, avec rayon de convergence non nul :

’
T T :;—-—-+ @—cp’: %4 4+ ... (

1o
=

La courbe C présente donc au point (7', kn + %) un point d’in-

flexion ordinaire avec tangente paralléle ¢ Uaxe des w; la courbe y
présente au point (z', ') un rebroussement de premiére espéce avec
tangente paralléle & Uaxe des ¢; la courbe J issue de ce méme
point (', ¢") donne

\ o = —-fcotm dz :t/ﬁsin‘e_s_ﬂ(l + ..)de :f—?ds—{—

cos e a

26
. (26)

— 0 = — 4+ ... T — 1/ =

? ‘ ba 3a

d’ou les coordonnées paramétriques

¢4 3
’ ’

o — o = — T — 1T = — 27
P Tt T = T (27)

Au point (z', ¢') la courbe 0 a sa tangente paralléle & 'axe des z,
quatre points communs étant réunis au point de contact. On remar-
quera, pour la courbe y, que les valeurs » = kmn donnent une tangente
paralléle a Uaze des =, mais pour 0 une asymptote parallile a I axe des g;
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pour la courbe C une telle valeur donne un point ou la tangente a pour
2

d®w
pente a; il est utile d’avoir ——;; on trouve

" d?w (2a sin w sin ¢ ) (a <4 sinv sin w cos w

dt? cos®w

> 4+ cos?v tgw (28)

cosd w cos® w

2

d*w
de sorte qu’au pomt »w = kx étudié pour C la valeur de ——- —r se réduit

-1
a asiny oua

e’ + 1 .
Ces résultats généraux établis, il y a trois cas a séparer :
1 o ! 1
a > 3 <a 7 a = 5
. 1 dw
Premier cas: a > . — Dans ce cas, — est constamment positif,
non nul, car
dw @ -+ siny sinw cosw
5o = ix ) - * (29)
dt cos? w

Sinous prenons, sur G, » comme variable indépendante, considérons
les valeurs successives de w etz

©) R C Rk | L VR
(30)
T) By s Br 5 o Ty o T, »

lous ne sommes jamais arrétés pour suivre la variation de z par

. zeg WL, ] , "
continuité, -~ étant toujours bornée et positive. On a

T
nw -+ —
2

f cos’w dw
-— T _ = =
n n~1 = @ -+ siny sinw cos w
N~ ~—
=2

-~

(31)

cos2w dw

<)

a + sinw cos w

<
wa

0
> f cos®w dw n
—— T D S e
n n—-1 - a

Donc les nombres 7, dépassent toute limite finie quand n devient
trés grand; - croit donc au dela de toutes limites en méme temps que

w (tous les deux par valeurs positives); au point t(z-?H , LT — 7> la
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courbe C commence tangentiellement a la droite - = 7,_; et se termine
tangentiellement a la droite + = ,, au point (z-n, nr -+ ~§>; au point
de cet arc ol w = nrw et jusqu’au point final, la concavité est tournée

vers les o positifs (formule 28), mais sur 'arc partant de <7:,H, nm — g:)
et terminé au point o o = nw, la concavité d’abord tournée vers les
w négatifs doit changer de sens, de sorte qu’il y a, sur cet arc, au moins
un point d’inflexion intermédiaire. Si @u-1, @, sont les valeurs de
correspondant & 71, et 7, les points (tn-1, n-1), (zn, pn) de y sont
deux points de rebroussement consécutifs; la formule (31), jointe au
résultat obtenu que 7, croit au dela de toutes limites par valeurs
positives, prouve que

+ = .
2 COSZ ) d(l)

Hm T, — T :/ - = 0
n=w (% net) = @ -+ sinw cosw

\ %

‘/'2 cos w sinw d o

= @ -+ slnw cos w

2

-

limn:oo (an - C?n—-l) =

Wa <P A
5_-11- -
2
T
21
51}
2
1 ¢ 0L>.L S
2
C
‘n [
2 ¥
T T T % T 1 T ‘E’
o 1 2 0 [ § 2
Fig. 1.

On posera tg w = u, et la méthode des résidus donne

. 2a P
I): 1 — @:— e 33
( n( \/’mz——i) Viea? —1 )
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© est positif, ® négatif; & mesure que n grandit les arcs de G ou y
compris entre = tn, eb T = 1, tendent de plus en plus & devenir
égaux aux arcs que définiraient les formules

cos?w dw cos w sinw dw o
T = f © = . (3&)
i
e .

a 4 sinw cosw a -+ sinw cos w

la premiére définissant, par une quadrature, une courbe (z, w), 'en-
semble des deux donnant paramétriquement une courbe (r, ¢). Quant
aux courbes ¢, les valeurs 0, =, 2r, ..., nm, ... de » fournissent une
asymptote parallele & I'axe des ¢, la distance de deux asymptotes
consécutives tendant vers la limite 6. Pour chaque valeur constante
donnée & u, on a sur X une géodésique I' tendant asymptotiquement
d’un coté vers le point de cote u sur Oz (r = + o), de 'autre coté
vers le point de cote (— u), (r = — ); en suivant les spires de ceftte
géodésique I', tg » repasse indéfiniment par toutes les valeurs comprises
entre — o et 4+ o de sorte que la courbure totale de 3 (formule 23)
ne tend vers aucune limite; I' présente une infinité de rebroussements

obtenus pour w = kn - g; I’arc de I' correspondant a I'intervalle

L s R
(Tn-1, Tn) €t égal & p (cos ¢, + €Os ¢,4) OU

1 u 26 n—1 2e°n
: ; 2= + 2 :
! e~n=1 4 1 e’n 4 1

{ la longueur totale de la géodésique I' est exprimée par une série de
meéme nature que Ze~», donc convergente (Dalembert). La figure 1
représente la courbe G, puis une courbe » et une courbe ¢'; le déplace-
| ment, parallélement a 'axe des ¢, du couple y, & donnerait le systéme
| orthogonal (y, d).

1
Deuzieme cas: 0 < a < 5. — On se rappellera les résultats géné-

| raux indépendants de la valeur numérique de a. Il est indispensable de
séparer les régions du plan (r, ») (en se bornant comme nous 'avons

montré & - > 0), ou f est positif ou négatif. Nous construisons donc
la courbe (A) d’équation, dans le plan (w, 7) ot Pon doit tracer G,

e — 1

+ =
3 e + 1

sinw cosw = 0 ., (35)

| q,é(o);}tp{fut écrire 2¢ = sin 2«, 2o étant un angle aigu positif; (35)
s’écrit done
e’ 4+ 1

sin 2w — — sin?a—; A
er — 1

(357)
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La courbe (A) comprend une infinité de branches se déduisant les
unes des autres par une translation égale a n, paralléle a 'axe des w;
la figure 2 n’en représente que deux; la branche inférieure du dessin

admet la droite @ = — —Z- pour axe de symétrie, pour asymptote les

droites o = — o et o = __% + a et est tangente a la droite (T)

=g by = oo (=)

4 2

. t d " .
au point o = — -Z; 9% est positif dans la région P de (A) contenant

I'axe des w, nul sur (A), négatif dans la partie complémentaire N.

Wa

@!
NN
@
QL

av

Al

Fig. 2.

Cela posé, soit une courbe C, suivie a partir du point ou elle perce
Paxe des o, point situé dans P. A partir de ce point « et 7 croissent
tous deux tant que I’on n’arrive pas en un point de la courbe (A);
de deux choses l'une: ou bien, en suivant G (la théorie des équations
différentielles permet d’obtenir des arcs successifs, tous analytiques), on
ne rencontre jamais (A), ou bien on la rencontre en un point M ; dans
le premier cas, puisque w et 7 croissent constamment, les arcs successifs




AGREGATION DE MATHEMATIQUES (1928) 255

conduisent & un point limite & distance finie ou infinie; ce point limite
ne peut étre a distance finie, car il n’y a pas de points singuliers a

distance finie pour G (le role des valeurs w = nn + % a été expliqué)

et en tout point régulier 4 distance finie on peut prolonger analytique-
ment C: donc le point limite est a Uinfini; (A) par sa forme empéche
que le point limite soit & I'infini dans une direction autre que I'axe
des w ou 'axe des 7; si le point s’éloignait & l'infini dans la direction
de 'axe des w, il y aurait une asymptote (w et ¢ allant constamment

g . 7 N dw . . . . .
en croissant) située a gauche de T, I aurail pour limite U'infini, ce

. . ; , dw . .
qui est impossible, le numérateur de 77> @+ sine sl o c0S® restant

fini, tandis que le dénominateur cos?w oscillerait indéfiniment entre 0
et 1; donc la seule hypothése admissible est que le point s’éloigne a
Pinfini dans.la direction de I'axe des r; comme » va constamment en

: . . dw .. , .
croissant, il y a une asymptote, donc — a pour limite zéro, ce qui en-

dt
traine que w tende vers une limite égale & —a + kn ou — & + o + km,

k étant un certain entier. On a marqué sur la figure des formes de
courbes C correspondant a cette hypothése (il faudrait d’ailleurs
serrer de plus prés encore la discussion pour montrer que cette hypo-
these est effectivement réalisée, ce qui est d’ailleurs le cas).

Il y a donc & examiner 'autre alternative: C rencontre A (hypothése
réalisable, puisque C est déterminée par un point initial choisi ad
libitum); comme par une translation égale a Am et paralléle & I'axe
des o la courbe C reste intégrale et donne la méme surface =, on peut
supposer le point de rencontre M situé sur la branche supérieure de
(A) dans la figure 2; en M la tangente & C est horizontale et M corres-
pond a un maximum de o (r); & partir de M, 7 continue & croitre et
w & décroitre; nous ne pouvons plus retraverser la branche en jeu de
(A) dans la figure 2, car un point de rencontre ne pourrait manifeste-

. . ’ 3n
ment s’obtenir que sur I'arc de A compris entre la droite o = 5 et la

® 7 “ ¥ , .
droite 3+ a; de nombreuses contradictions en résulteraient, car,

k

. . dw d?w d?w La e
en ce point on aurait , = 0, T < 0 [formule (28), ~o7 se réduit a
he®t d aq @ ;
cos? ¢ tg w ou —*——— tg w], de sorte que —— négatif immédiatement
(7 + 1)? dt

avant le point de rencontre devrait décroitre et continuer a décroitre ;

: : . . . odo | .
mais, atteindre la valeur zéro oblige au contraire 7- @& croitre; par
T

suite, en reprenant le raisonnement sur les prolongements successifs de
la courbe C, la branche en jeu ne peut que devenir asymptote a la droite

g + a, en restant toujours au-dessus de la branche de (A) asymptote
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a cette droite [tandis que plus haut nous avons trouvé la possibilité

d’arcs d’'une courbe C asymptotes & cette droite w = g« + o (ou

;—t—l— o + kn) et situés en dessous de I asymptote, ou d’arcs de G asymp-
totes aux droites o = — a + k7 situés en dessous de 'asymptote en jeu
et au-dessus de la branche en jeu de (A)]. Le dessin représente diverses
formes de courbes C, correspondant & une méme valeur de

1 . e e
a(o <a< ?)' Entre axe des o et la droite (T), la limitation infé-

rieure de (r, — 1,4) donnée par la formule (31) s’applique et ce
résultat, joint & la présence de la courbe A, prouve bien que chaque

courbe C ne peut maintenant présenter qu'un nombre fini de points
i

w de cote o = 5 -+ kn (inflexion verticale pour C), de sorte que y,

NP

Fig. 3. .

elle aussi, ne peut avoir, comme I', qu'un nombre fini de points de
rebroussement; sur toute courbe (i, r devient égal & 4 o et o égal

Y TC hY hY ’ kg Y * -
a—aoug+a (& km prés) quand on s’éloigne a 'infini surla courbe C;
donc pour les courbes y correspondant au choix de C, il y a une
. . . . Tc
direction asymptotique faisant avec I’axe des  'angle — « ou 5+ a

suivant le cas; reconnaitre s’il y a une asymptote a distance finie
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semble plus difficile. La surface 3 s’enroule encore asymptotiquement
autour de Oz; pour la géodésique I' la latitude ¢ tend vers +§, le

point se rapproche du point de cote u de Oz, tandis que la longi—
tude o augmente indéfiniment; Parc de T' compris entre le dernier
point de rebroussement et le point atteint asymptotiquement est fini

, . ucosvy 2ue
et égal a — ou ——
a e="~o + 1

dernier rebroussement; la courbure totale de X, en se rapprochant

. . . . col? o
de ce point de Oz, est d’apres la formule (23) voisine de — — 5
—1g?a . e % .
—5—— suivant que la valeur limite de @ est — o ou —3 + « (akm

, 7o etant la valeur correspondant au

prés). La figure 3 donne la forme des courbes y ou 0.

C o . | . 1
Troisiéme cas: a = - . — 1l reste enfin & parler du cas a = 3

: 1 : :
dans ce cas, comme dans le premier (0; > 5 ); w est une fonction crois-

sante de =: on a, pour C ou y une forme analogue a celle de ce premier
cas, sauf cette fois que les différences 7, — ,- OU @, — @,y augmentent
au dela de toutes limites quand n augmente indéfiniment: les valeurs

, 1. o ,
calculées pour ) et ®, dans le cas a > 7 laissent prévoir ce résultat;

mais pour ne pas allonger, je ne donne pas de démonstration; la
surface s’enroule asymptotiquement autour de Oz et la courbure

totale n’a pas de limite quand on atteint asymptotiquement un point
de Oz

L’Enseignement mathém., 28¢ année; 1929. 17
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