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LA REPRESENTATION
PAR DES INTEGRALES DEFINIES

DE

QUELQUES SERIES ELEMENTAIRES DE L’ANALYSE

PAR

N. Cioranesco (Bucarest).

-
1. — Considérons une série des puissances > a,z" (1) conver-
]

gente par exemple pour |x‘ < 1. Il est évident qu’on peut repré-
senter une telle série sous la forme d’une intégrale définie, ou x
entre comme parametre. Inversement dans la plupart des cas,
on calcule une intégrale définie pour une valeur particuliere du
parametre et avec une approximation donnée, en la développant
en série.

Il semblerait donc superflu de chercher & donner pour une série
telle que (1), ou pour une série numérique, des expressions
intégrales, qui en général ne nous renseignent pas plus sur la
fonction représentée par (1), que la série méme.

Mais, en dehors d’une certaine élégance que peuvent revétir
certaines expressions intégrales, une telle expression est plus
saisissante pour l'esprit et peut conduire & des relations remar-
quables.

Dans ce qui suit, on donne des expressions intégrales, analogues
a celle de Riemann pour la fonction Z(s), pour les séries (1) dont
les coefficients sont de la forme:

1

Tt _ .
1

(n+ ay) (0 + )" (a4 a)?logh (n + by) . logha(n + b)) . .logii (n + L) |
(2)

ol
% B Ay, = et log, A = log(log, ,A) .
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On peut obtenir pour ces séries des expressions intégrales de
la maniére la plus simple, en n’exigeant que la connaissance de
la définition de la fonction T'(a) d’Euler et I'expression de la
somme d’une progression géométrique.

2. — On sait que:

I'a) = fx"“l e dx (3)

ou bien :

Par conséquent:

feﬂkxl/m dz = Ple + 1) (%)

ou k est un nombre dont la partie réelle est positive. Rk > 0.

Posonsdans (4) k =1+ 0,2 + o ... n -+ m, ... et faisons apreés
la somme de 1 & n des expressions ainsi obtenues. Aprés multipli-
cation préalable par 2. On obtient:

n

En faisant n — oo, on a, aprés changement de notation:

* n—\ @ sl —wn

x 1 woe
S T e “

1 0 o

relation bien connue qui généralise celle de Rlemann qui s’obtient
pour x =1, » =0, Rs > 1.

Dans la méme expression (4), qui est & la base de toutes
les relations que nous obtenons, faisons £ = log (n + ). On a
alors:

Pe 1) joﬁeﬁtl/g,log(n—}—m)dt _ /‘A_dt
]og (n + m) o o (n m)t

Done:
Mo +1) /- dt

(ll -+ U)) log ( + m) 0 (Il L w)sf{—z;/m .

’
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Multiplions par z"' et faisons la somme par rapport a »
de 1 a1’ oo, on obtient, en tenant compte de (a) :

*© n—1 vts—1 —wlt

oe] /___1 , oL
2 z f__s ds f i . e du |
= (n + w)® log* (n + w) 0 I ¢ e — x

(4)

qui est convergente aussi pour z = 1 st Rs > 1.
De la méme maniére, en faisant £ = log log (n + o) =
log, (n + ) dans (4) et en tenant compte de (0) on trouve que:

0 n—1
X

‘TJ (n 4+ o) log* (n + w) logs (n + w)

w

4 o2 ,@——l y V+O —1 IL+ s—1 —wl
‘_L /‘ T dy du f ) dt (€)
B) &/ I'(a + ) (s

) 0 0

et ainsi de suite, pour toute série de Bertrand généralisée
de la maniére précédente. Une telle série, dont le terme général
contient log)(n + ) au dénominateur, peut s’exprimer avec
une intégrale (k 4 1)—uple et qui est facile & former.

3. — Considérons les deux relations:
fe"’/"”l/adc S Gl i : /’642-,‘/? dr == U +1) + b
. K . %

En les multipliant, on obtient:

e e}

[ ettt gy g, o D2 2 NEEF 1)
0

7 ) (5)

B k* .k

Sil'on faitici k=n+4a;, h=n-—+ ay, a=s;, B=2s, et on

fait la somme de 1 & I’ ® aprés multiplication avec z"', on
obtient (aprés le méme changement de variable):

2 xn—l 1 ® o l ql—-l ,S2-1 o~ IU—ayY
= dud
™ (n+ ay)™ (n + a,)™® [ (sy) T'(s,) '0/, et wav

(d)
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qul est une autre généralisation de la relation de Riemann et de
la fonction &(s), au champ de deux variables s;, s,. C’est un
exercice facile que de voir comment (d) se réduit a (a) lorsque
A = Ay = w, §; } So = 8.

De la méme maniére on obtient la relation suivante:

s1=1 so—1 _s3~1 —aju—agv—agw

1 I R T SLUL L
[ (sy) 1" (s,) 1" (s5) ./:/‘[‘ pltvtw dudydw ()

X

et ainsi de suite.

Considérons dans (d) le cas particulier suivant:
a, = a.l, ay = — a.l, §; = S, = s et aprés changement de
. en — ¢ et en faisant la somme (on peut supposer pour simplifier
x et s réels) on obtient: 1

n—1 9or 90 s—1
ST ~77967**‘ _ ""011 /.f (up)"™" cos a(u — v) du dv (/)
“1-‘ (n? + a®)° I'2(s) « e

qui pour ¢ = 0, z = 1 se réduit a £(2s).
De méme on obtient:

i n—1

% X
2 (n 4 a))’ log” (n + b))

1

s—1 a1 —a,u @ ’v—l —byt

1 R A f
F(S)_]‘(av)‘,v tf‘m—_ dudy t/.~ —yr —dt (g)
0

e -
0 0 5

et, de proche en proche, toujours de la méme maniére, on obtient
des expressions intégrales, pour toute série dont les coeflicients
sont de la forme (2). Sans insister davantage sur ces relations,
qui ne présentent aucune sorte de difficultés, je laisse au lecteur |
le soin d’établir nombre d’identités remarquables entre inté-
grales multiples, qui peuvent s’obtenir par simple dérivations 'i
ou intégration par rapport a x, dans les deux membres et par
comparaison des résultats obtenus.
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Il est possible d’ailleurs que beaucoup de ces relations solent
connues depuis longtemps, mais, & notre connaissance celle-ci
est la maniére la plus simple et & la fois la plus générale de les
obtenir toutes de proche en proche et nous croyons qu’elle
constitue un excellent exercice pour les débutants de I’Analyse.
C’est & eux que nous avons pensé en écrivant ces lignes.

Bucarest, 13 septembre 1929.

SUR LES TRANSFORMATIONS LINEAIRES

PAR

Luca Teoporiu (Bucarest).

1. — Lorsqu’un milieu continu se déplace et se déforme d’une .
maniére continue, on sait que ses éléments obéissent a certaines
lois géométriques qui résultent de la continuité et de I'existence
des dérivées !. Mais I’hypothése d’existence des dérivées est
quelquefois superflue dans beaucoup de problémes relatifs a la
question citée. Le but de cette note est de donner seulement
quelques exemples simples & 'appui de cette affirmation.

2. — Soient |
X, = filz,, 25, x3) i =1,23 (1)

les formules de transformation qui donnent & Dinstant ¢ les
coordonnées d’un point X, I’homologue dans le milieu transformé
d’un point z, du milieu primitif.

Les fonctions X, sont uniformes et continues dans I'intérieur
du milieu primitif et inversement z; sont des fonctions uniformes
et continues des X, dans le milieu transformé.

1 Voir le mémoire de M. CosSERAT dans les Annales de la Faculté de Toulouse, tome X.
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