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SUR IEMPLOI D’UNE TROISIEME COORDONNEE
EN THEORIE DES SURFACES

PAR

J. BEcQuE (Carcassonne).

Aux coordonnées curvilignes u,, u,, sur une surface S, on est
conduit a adjoindre une troisieme, u,, par suite de 'emplo1 du
triedre tangent en un point M, défini par

oM oM
M, = - M, = —

Ouy

oM oM

?

M, =

— , ;
0 U, 0y O Uy

S étant considérée comme surface coordonnée des u,, u,, on a
us = const® sur S, mais ne nous occupant que de S et non de la
famille des surfaces coordonnées nous pouvons définir u, par

oM oM oM

R = .\13 = — .
0Uy 0ly; Oty

On est alors amené a chercher la signification des dérivées
partielles en ug des éléments les plus simples; on trouve ainsi que
les coefficients de la deuxiéme forme fondamentale sont, au facteur

' by ’ A ’ * .
— 5 prés, les dérivées partielles, en ug, des coefficients correspondants
5 /]— \ ¥ 2 ’
du ds?, que la courbure moyenne est, au facteur 5 prés, la dérioée

. 1 : : , :
partielle en uy de 7. L’emploi des trois coordonnées donne auss

une interprétation remarquable des symboles de Christotlel.
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I. — On sait que
M\ ?2 oM _ oM o M\?
Ez?‘l’“y F=-—>x-—, G::(-—)',
\0 Uy 0 uy 0 u, 0 Uy
M oM oM 02 M M oM
p =N (M) O () oy
o 1, ou,y 0 Uy Ouy Ou, Uy Uy
0’M oM oM
pr =22 ><<——/\w—>.
ity ouy ?uz
Posons, pour abréger
oM *M
—_— fo— o — I\ o —1 4
M; = Quy Mij Codugdu; Oy T MsL <M, (U:w ”w)
J
En vertu de la commutativité des dérivations partielles
L "
4 buj du; Jt
done
Do ) 0 0 0
O = (— M, ) XM, + M, x —M, =M, x M, + M, X M, ,
du, 0Ug 0 Uy 0 Uy : O Uy

0 0
= M, >< — (M; A M) + M, > — (M; A M,) ,
0 iy, O Uy

= M, > M1z A My ++ My >< Miy A My 4+ M, < M, A M,
4+ M, >< M, A Ma, ,

S (Mip, > M‘I /\ lwg + My, > NI{J. /\ Mz -+ M'Z(L > M1 /\ M,
+ Ml‘) >< 1\/[1 /\ M:‘L) °

En observant que

gn=E, 812 = 8u = F , 82 = G
on a
_ By _LaF _ 1G4
2 0u, 20w, ' 2 du, '

II. — Ayant:

a) gz = Mz = (M; A M,) (M A M) = 511 822 — 3?2 )
done

H = \/EG——F‘“’ — \/z‘a’33 ,
b) a AN (b Ac)=(ax<e)b— (axb)ec;
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210 J. BECQUE

¢) La courbure moyenne en M a pour valeur

1 <1 1 > __ ED" + GD — 2FD’
2

o = 5 " :
m 9 Rl R 9H3
d) M, > M, = 0 5 i=1, 2.
Done
oM, oM,
Mixbll :_M3><Du :_M3><Mia.:—“MI:a><(M1/\ Mg) y

et par suite

Ml > 1\’113 = == \’]11 < (Ml /\ 1\12) — — D
M, < My; = My <X M, = —M, <x (M, A Mj)) = — D’
M, <X My; = — My, <X (M; A My) = — D",

On trouve alors

d O
833 — _ 2(M,, > My A M, + My, < M, A M),

— - Mla[(Mz > M1) Mz - (Mz > Mz) Ml]

+ My [(My XX M) My — (M < My) My,
= 812 (M X Myy + My XX Myy) — g9, My XX Myy — 83 My XM,
= — 2FD’ 4 ED"” 4 GD = 2H3%p  ,

donc
1 dH 1 » 1

P = T I on, — 2w W

ITI. — Soit T* (M?, M2, M3) le triedre supplémentaire du triédre
tangent T (M;, M,, M,).

Posant
g = M* < M, on a M, = g..M", M* = 2*'M, ,
0 v,
M# > Nl., = glkag‘,,,' ) s _7& ’
1 p=w.

Introduisons les symboles a 3 indices de Christoffel (écrits sui-
vant la notation de M. R. Lagrange).
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Les symboles de premiére espéce sont

a« | 1 /08w n d Gun 0 8uy
(v T2 oty O Uy Oy,
1
= i(M» > Ma;}, + va.« > NIU + Mt/. > M:L“ + MW P M!‘
i M!L < M‘IU. = NI;M/, > M/)

d’ou, compte tenu de (1),

[a:l _— M(/.><M;w .
{lV

Ce sont les projections de M, sur T, ou composantes sur T*.
Les symboles de seconde espéece sont

— & L,.v] ’

Multipliant scalairement M* = g« M. par M,,, on a:

&

Ly

i

EU'%:M”'XMW,.

vy

Ce sont les composantes de M,, sur T, ou projections sur T*.
On a alors des expressions simples pour d2M, dans lesquelles
on tiendra compte de du; = 0 sur S,

d*M = d?u, M, + du,du,. My, , ayant dM = du, .M, ,

ou, mettant en évidence les composantes sur T:

A*M = (&M = M), M, = <d2ua e ;dulxdu‘,>. M. .

(v

Une application est I’obtention des équations des géodésiques:
d®M devant étre normal a S doit étre orthogonal & M, et M,, d’ou

d?u. + g: %dlt:Ldll-, = 0, e=1,2.
.y




	SUR L'EMPLOI D'UNE TROISIÈME COORDONNÉE EN THÉORIE DES SURFACES

