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196 M. DUFOUR

IV. — APPLICATIONS A L’OPTIQUE.

1. — Ovales stigmatiques par rapport & deux poinis donnés.

On sait depuis Descartes que la méridienne d’un dioptre
stigmatique pour deux points donnés P et P’, situés dans deux
milieux optiques d’indices respectifs 1 et n, est une ovale de
Descartes dont ces points sont deux foyers 1.

On obtient I’équation de cette ovale en appliquant la loi
du tautochronisme, c’est-a-dire en écrivant que le temps mis par
la lumiére pour aller dans le premier milieu du point P & un point 1
de 'ovale et du point I au point P’ dans le second milieu est
une constante. Les rayons vecteurs p et o’ étant positifs, on
affectera p du signe + ou du signe — suivant que P sera un point
lumineux réel ou virtuel; o’ sera affecté du signe +- ou du signe —
suivant que P’ sera une image réelle ou virtuelle. Désignant par
p, et p; les distances de P et P’ au point S ou la méridienne
rencontre I’axe PP’, nous écrivons la loi du tautochronisme sous

la forme
+ ¢ £ ng’ = 4 g0 &k np

Les deux points P et P’ étant donnés, il y a pour toute position
de S une ovale stigmatique, qui suivant la distribution des points
P, P’ et S peut étre une ovale intérieure ou une ovale extérieure.
D’aprés ce qui a été dit plus haut (I § 2 et III, § 1), nous
pourrons reconnaitre sa nature, savoir a quels foyers elle est
rapportée et dire si au point S elle présente un maximum ou un
minimum de courbure. Des considérations trés simples vont
nous fournir directement ce dernier renseignement dans le cas ou
P et P’ sont conjugués par rapport a un dioptre sphérique de
sommet S.

Supposons que le dioptre sphérique tourne sa convexité du

1 Un systéme optique est stigmatiqgue pour deux points P et P’ si tous les rayons
incidents venant de P ont pour conjugués des rayons passant par P’/. Le systéme est
aplanélique quand il est stigmatique pour les points infiniment voisins de P et P/,
situés au voisinage de son axe dans deux plans perpendiculaires & I’axe.
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¢Oté d’oll vient la lumiére et que le second milieu est plus réfrin-
gent que le premier (n > 1). Nous avons a distinguer un certain
nombre de cas. ,

1. P réel infiniment éloigné; P’ coincide avec le foyer-image.
L’ovale se réduit & une ellipse, présentant en S un maximum de
courbure.

2. P réel plus éloigné de S que le foyer objet; P’ est réel

(fig. 7). La condition du tautochronisme donne o + ns’ = k.
(&) I( ‘ (f1)
P s\ © p’
Fig. 7.

L’ovale, indiquée schématiquement en pointillé, est une ovale
intérieure rapportée aux foyers F; et Fy (voir le tableau, I §2) et
P’ ne peut correspondre a F, puisque 'on a n > 11 Donc P
correspond a Fy et P a F,. Il y a un mazximum de courbure en S.
3. P réel placé au foyer-objet; P’ est & infini. L’ovale devient
une hyperbole. Mazimum de courbure en S.
4. P réel et P’ virtuel (fig. 8), Nous avons

o nEg = g, no < 0

\ )

tF) (f2) /
P’ Ps\ 0
Fig. 8.

puisque ¢ > o et n >1. Il s’agit d’une ovale extérieure. Comme
en S elle tourne sa convexité vers les foyers P et P/, P’ correspond
aF,et PalF, Ilyaun mazximum de courbure en S.

5. P et P’ coincident avec S. L’ovale se réduit & un point.

6. P virtuel placé entre le sommet S et le centre de courbure O
du dioptre sphérique; P’ est réel entre P et O (fig. 9). Nous avons

-——p—{—n‘o’:——oo—:—nro’ > 0
} lO
Foat
skpp'o

Fig. 9.

1 P’ ne peut jamais correspondre a F3, ni P a F; .
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puisque p, > p, et n >1. Cest 'équation d’une ovale extérieure.
La courbe tournant en S sa concavité vers P et P’, P’ correspond
aFi et PaF, Ilyaun minimum de courbure en S.

7. P et P’ coincident avec 0. L’ovale se réduit au cercle méri-
dien du dioptre puisque les foyers F, et F, viennent en coinei-
dence.

8. P virtuel au-dela de 0 et en deca du point stigmatique objet
du dioptre (fig. 10).

// (Fa(F3)
S\, OPP
Fig. 10.

Si P est virtuel et placé au-dela de 0, P’ est réel et placé entre
0 et P. Nous avons

’

— o + np’ = — g + npo

Quand P se déplace vers la droite & partir de 0, — o, 4+ n p(', part
de la valeur positive (n — 1) SO et décroit pour s’annuler quand
P atteint le point stigmatique objet. Nous reconnaissons I’équa-
tion d’une ovale extérieure. Il y a un mintmum de courbure en S.

9. P virtuel placé au point stigmatique objet, P’ au point
stigmatique image. Nous avons — p + ns' = 0. L’ovale se
réduit au cercle méridien du dioptre sphérique.

10. P virtuel placé au-deld du point stigmatique objet; P’ est
entre O et P (fig. 11). Nous avons

—p—{—np’:-——\oo—(—np(')<0‘
{ (F2) (F3)
S\ 0 P’ P

Fig. 11.

C’est Iéquation d’une ovale intérieure rapportée aux foyers
F,et Fy: Fyest en P', Fyen P. Il y a un maximum de courbure
en S.
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On peut faire la méme discussion si, n étant toujours plus
grand que 1, le dioptre tourne sa concavité du coté d’ou vient la
lumiére. Enfin, pour passer aux cas ou on aurait n < 1, il suffirait
d’appliquer le principe du retour inverse des rayons lumineux.
- Ce mode de raisonnement s’applique aussi aux miroirs stigma-
tiqgues pour deux points donnés. Dans le cas de la réflexion
(n = — 1), Povale se réduit & une conique, dont la courbure aux
sommets sur I’axe est toujours un mazimum.

2. — Aberration du dioptre sphérique.

Pour les rayons centraux, 'action du dioptre sphérique est
la méme que celle du dioptre stigmatique ayant pour méridienne
I'ovale dont le cercle osculateur en S coincide avec le cercle 0.
Si cette ovale présente en S un maximum de courbure (fig. 12),
I'effet optique réalisé en chaque point I par la substitution du
dioptre stigmatique au dioptre sphérique est celui que produirait
en I 'adjonction au dioptre sphérique d’un prisme d’angle treés
petit & aréte tournée vers I’axe. Ce prisme déviant les rayons vers
sa base, nous en concluons que les rayons marginaux réfractés
par le dioptre sphérique rencontrent ’axe en un point P’’ plus
rapproché du sommet S que le point P’ ou se croisent les rayons
centraux. L’aberration est dite sous-corrigée. Si 'ovale présente
en S un minimum de courbure (fig. 13), l'effet optique réalisé

p' Pll
Fig. 12. Fig. 13.

par la substitution du dioptre sphérique au dioptre stigmatique
est celul que produirait en I 'adjonction au dioptre stigmatique
d’un petit prisme a aréte tournée vers 'axe: nous en concluons
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que les rayons marginaux réfractés par le dioptre sphérique
rencontrent ’axe en un point P’ plus éloigné de S que P’.
L’aberration est dite surcorrigée .

D’apreés ce qui a été dit au paragraphe précédent, I’aberration
du dioptre sphérique convexe et convergent est surcorrigée
quand le point lumineux objet P se trouve entre le sommet du
dioptre et son centre de courbure; quand P est extérieur a cet
intervalle, I’aberration est souscorrigée. L’aberration du miroir
sphérique garde toujours le méme sens, quelle que soit la position
du point-objet sur 'axe: elle est toujours souscorrigée pour le
miroir sphérique concave et surcorrigée pour le miroir sphérique
convexe.

3. — Surface de Uonde réfractée de chemin optique nul dans le cas
d’un dioptre sphérique et d’une onde tncidente sphérique.

L’ovale de Descartes se rencontre encore quand on cherche la
surface de 'onde réfractée de chemin optique nul donnée par
un dioptre sphérique, le point-objet A étant a distance finie 2.

1 On peut, en précisant ces indications, calculer la valeur de I’aberration. Prenons
sur I'ovale et sur son cercle osculateur au sommet deux points voisins situés a une
méme distance infiniment petite h de I’axe. Menons en ces points les normales 4 I’ovale
et au cercle. Les angles 7 et 9o qu’elles font respectivement avec I’axe sont des infiniment
petits; leur différence = | P—%o | est I’angle du petit prisme additionnel. Pour
avoir 7, nous utilisons I'expression de tg 7 donnée dans la deuxiéme partie de cette
note, en développant les sinus et cosinus en série jusqu’au.troisiétme ordre inclusivement
et tenant compte de la relation qui existe:entre les distances de deux points conjugués
au sommet d’un dioptre sphérique d’indice n et de rayon R. Nous trouvons

'ﬁn—{—i.z
@ == 2n2'l,(_|),

w étant I’angle du rayon incident avec la droite joighant le point d’incidence au point
stigmatique objet du dioptre sphérique. La déviation imprimée par ce primse d’angle ¢

au rayon réfracté est
n2—1 .
a‘:(n——-i)ﬁ,p: an L20).

Le déplacement correspondant du point d’intersection de ce rayon avec ’axe est
3.1P’: sin ¢’. Comme g est du troisieme ordre infinitésimal et ¢/ du premier ordre,
nous pouvons remplacer sin ¢’ par la partie principale de 9/, ¢’est-4-dire par h: SP’,
et IP’ par SP’ qui lui est égal & un infiniment petit du second ordre prés. Donc

. 2
SP’ n2—1 SP’
pr o= 3. - .
P'P J h 2n2

2w,

2 Si le point-objet est & I'infini, la surface d’onde réfractée de chemin nul est rejetée
a linfini.
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Soient O le centre de courbure du dioptre, Al unrayon incident
quelconque, OI la normale (fig. 14 et 15). La circonférence menée

5 ™C

0 B - *7A
P

Fig. 14.

par A et I et tangente a OI coupe la droite OA en un point fixe B et
OB.0OA = OI2. Soient P le second point ou le rayon réfracté IP

Fig. 15.

coupe la circonférence AIB, et C l'intersection de OA et de IP.
Le triangle AIP nous donne

PI sin i’ 1
Al sini n o

Les temps employés par la lumiére pour aller de A a I dans
le premier milieu et de P & I dans le second milieu sont égaux.
Le lieu du point P est la méridienne de la surface d’onde réfractée
de chemin optique nul. Nous avons, dans les triangles PAC et
PBC,

P_A__—s_iny ot PBM sin y
CA  sin APC CB ~ sin BPC
D’ou
(ilé o sin BPC PB CB sin BAT PB

on —_— =

CA ~ sin APC  PA CA sin ABI " PA °
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Le triangle AIB donne

sin BAI _ BI
sin ABI ~ Al °
Donec
CB Bl PB_SB PB CB R —R!:a PB
CA~ Al PA  SA PA ou CA — a PA

D’aprés ce que nous avons vu plus haut (II, § 1), PC est nor-
male & une ovale de Descartes dont deux foyers sont A et B.

=

Un des sommets est & une distance Eﬁé du sommet du dioptre.

La connaissance de la nature de cette ovale donnerait directement
le sens de aberration pour le point A, mais le procédé artificiel
indiqué au paragraphe précédent est plus simple.

4. — Condensateur cardioide.

Nous signalerons encore ici, bien que l'ovale de Descartes
n’y intervienne pas, une application catoptriqgue de la cardioide.
La cardioide peut étre considérée comme engendrée par un
point d’un cercle qui roule extérieurement sur un cercle égal.

T T

Fig. 16.

Soient O le centre du cercle de base, O" une position quelconque
du centre du cercle mobile, I le point correspondant de la car-
dioide et S son point de rebroussement (fig. 16). Le trapéze

et
[ e AT
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SIO’O est isocele. La droite IA normale & la cardioide est bissec-
trice de ’angle SIO’; O'B est paralléle a SO; OO’ est bissectrice de
Iangle formé par les droites O'I et BO’ prolongée. Tragons le
cercle ayant O pour centre et passant par O’.

Un rayon lumineux XO’ paralléle a ’axe se réfléchit sur le
cercle suivant O'I, puis sur la cardioide suivant IS. L’association
du miroir sphérique convexe, ayant pour centre le foyer singulier
et de rayon égal au diameétre du cercle de base, & un miroir
concave de révolution, ayant pour méridienne la cardioide
transforme un faisceau de rayons paralleles 4 ’axe en un faisceau
homocentrique de sommet S. Ce systéme optique est stigmatique
pour le point S et le point infiniment éloigné de son axe et, de plus,
il est aplanétique, car le rayon incident et le rayon deux fois
réfléchi se coupant sur la circonférence de cercle de centre S
et de rayon SB = 00’, la condition d’aplanétisme (condition des
sinus) se trouve satisfaite. Ce systéme catoptrique est réalisé dans
le condensateur cardioide de Zeiss, qui s’emploie avec le micro-
scope pour l’éclairage & fond noir et 'ultramicroscopie. Comme
on n’utilise qu’une faible portion de la cardioide au voisinage du
point I, on la remplace par une portion de son cercle osculateur
en I. Le rayon de courbure de ce cercle se détermine facilement.
Le miroir concave employé est alors une zone empruntée & la
surface d’un miroir torique.
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