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IV. — Applications a l'optique.

1. — Ovales stigmatiques par rapport à deux points donnés.

On sait depuis Descartes que la méridienne d'un dioptre
stigmatique pour deux points donnés P et P', situés dans deux
milieux optiques d'indices respectifs 1 et n, est une ovale de

Descartes dont ces points sont deux foyers 1.

On obtient l'équation de cette ovale en appliquant la loi
du tautochronisme, c'est-à-dire en écrivant que le temps mis par
la lumière pour aller dans le premier milieu du point P à un point I
de l'ovale et du point I au point P' dans le second milieu est

une constante. Les rayons vecteurs p et p' étant positifs, on
affectera p du signe + ou du signe — suivant que P sera un point
lumineux réel ou virtuel ; p

' sera affecté du signe + ou du signe —
suivant que P7 sera une image réelle ou virtuelle. Désignant par
p0 et p'o les distances de P et P' au point S où la méridienne
rencontre l'axe PP', nous écrivons la loi du tautochronisme sous
la forme

±P± n? ± ?0 ± n?f0 •

Les deux points P et P' étant donnés, il y a pour toute position
de S une ovale stigmatique, qui suivant la distribution des points
P, P' et S peut être une ovale intérieure ou une ovale extérieure.
D'après ce qui a été dit plus haut (I § 2 et III, § 1), nous

pourrons reconnaître sa nature, savoir à quels foyers elle est

rapportée et dire si au point S elle présente un maximum ou un
minimum de courbure. Des considérations très simples vont
nous fournir directement ce dernier renseignement dans le cas où
P et P' sont conjugués par rapport à un dioptre sphérique de

sommet S.

Supposons que le dioptre sphérique tourne sa convexité du

i Un système optique est stigmatique pour deux points P et P' si tous les rayons
incidents venant de P ont pour conjugués des rayons passant par PL Le système est
aplanétique quand il est stigmatique pour les points infiniment voisins de P et P',
situés au voisinage de son axe dans deux plans perpendiculaires à l'axe.



LES OVALES DE DESCARTES 197

côté d'où vient la lumière et que le second milieu est plus réfringent

que le premier (n > 1). Nous avons à distinguer un certain
nombre de cas.

1. P réel infiniment éloigné; P' coïncide avec le foyer-image.
L'ovale se réduit à une ellipse, présentant en S un maximum de

courbure.
2. P réel plus éloigné de S que le foyer objet; P' est réel

(fig. 7). La condition du tautochronisme donne p + no' k.

Cf3) (Fi)

P H 0 P'

Fig. 7.

L'ovale, indiquée schématiquement en pointillé, est une ovale

intérieure rapportée aux foyers F3 et F1 (voir le tableau, I § 2) et
P' ne peut correspondre à F3 puisque l'on a n > 1 1. Donc P

correspond à F3 et P' à Fx. Il y a un maximum de courbure en S.

3. P réel placé au foyer-objet; P' est à l'infini. L'ovale devient
une hyperbole. Maximum de courbure en S.

4. P réel et P' virtuel (fig. 8), Nous avons

0 — no' — on — no' < 0
1 1 1 u 1 o

jjg ih) IT psJ o "

Fig. 8.

puisque pQ > po et n >1. Il s'agit d'une ovale extérieure. Comme
en S elle tourne sa convexité vers les foyers P et P', P' correspond
à F1 et P à F2. Il y a un maximum de courbure en S.

5. P et P' coïncident avec S. L'ovale se réduit à un point.
6. P virtuel placé entre le sommet S et le centre de courbure O

du dioptre sphérique; P' est réel entre P et O (fig. 9). Nous avons

« s -f no' — pn -f no' > 0
k 1 u ' ' o

fihKh)

S\^PP' 0

Fig. 9.

1 P7 ne peut jamais correspondre à F3, ni P à Fx
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puisque p'0 > p0 et n > 1. C'est l'équation d'une ovale extérieure.
La courbe tournant en S sa concavité vers P et P', P' correspond
à Fx et P à F2. Il y a un minimum de courbure en S.

7. P et P' coïncident avec 0. L'ovale se réduit au cercle méridien

du dioptre puisque les foyers F1 et F2 viennent en coïncidence.

8. P virtuel au-delà de 0 et en deçà du point stigmatique objet
du dioptre (fig. 10).

Si P est virtuel et placé au-delà de 0, P' est réel et placé entre
0 et P. Nous avons

- p + flpr — p0 + // •

Quand P se déplace vers la droite à partir de 0, —• p0 + np'Q part
de la valeur positive (n — 1) SO et décroît pour s'annuler quand
P atteint le point stigmatique objet. Nous reconnaissons l'équation

d'une ovale extérieure. Il y a un minimum de courbure en S.

9. P virtuel placé au point stigmatique objet, P' au point
stigmatique image. Nous avons — p -j- no' — 0. L'ovale se

réduit au cercle méridien du dioptre sphérique.
10. P virtuel placé au-delà du point stigmatique objet; P' est

entre 0 et P (fig. 11). Nous avons

Fig. 10.

— p H- " p' — fo + n P' < 0

Fig. 11.

C'est l'équation d'une ovale intérieure rapportée aux foyers

F2 et F3: F2 est en P', F3 en P. Il y a un maximum de courbure

en S.
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On peut faire 1a. même discussion si, n étant toujours plus

grand que 1, le dioptre tourne sa concavité du côté d'où vient la
lumière. Enfin, pour passer aux cas où on aurait n < 1, il suffirait
d'appliquer le principe du retour inverse des rayons lumineux.

Ce mode de raisonnement s'applique aussi aux miroirs stigma-
tiques pour deux points donnés. Dans le cas de la réflexion

{n — 1), l'ovale se réduit à une conique, dont la courbure aux
sommets sur l'axe est toujours un maximum.

Pour les rayons centraux, l'action du dioptre sphérique est
la même que celle du dioptre stigmatique ayant pour méridienne
l'ovale dont le cercle osculateur en S coïncide avec le cercle 0.

Si cette ovale présente en S un maximum de courbure (fig. 12),
l'effet optique réalisé en chaque point I par la substitution du
dioptre stigmatique au dioptre sphérique est celui que produirait
en I l'adjonction au dioptre sphérique d'un prisme d'angle très

petit à arête tournée vers l'axe. Ce prisme déviant les rayons vers
sa base, nous en concluons que les rayons marginaux réfractés

par le dioptre sphérique rencontrent l'axe en un point P" plus
rapproché du sommet S que le point P' où se croisent les rayons
centraux. L'aberration est dite sous-corrigée. Si l'ovale présente
en S un minimum de courbure (fig. 13), l'effet optique réalisé

2. — Aberration du dioptre sphérique.

P"P' P'P"

Fig. 12. Fig. 13.

par la substitution du dioptre sphérique au dioptre stigmatique
est celui que produirait en I l'adjonction au dioptre stigmatique
d'un petit prisme à arête tournée vers l'axe: nous en concluons
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que les rayons marginaux réfractés par le dioptre sphérique
rencontrent l'axe en un point P" plus éloigné de S que P'.
L'aberration est dite surcorrigée 1.

D'après ce qui a été dit au paragraphe précédent, l'aberration
du dioptre sphérique convexe et convergent est surcorrigée
quand le point lumineux objet P se trouve entre le sommet du
dioptre et son centre de courbure; quand Pest extérieur à cet
intervalle, l'aberration est souscorrigée. L'aberration du miroir
sphérique garde toujours le même sens, quelle que soit la position
du point-objet sur l'axe: elle est toujours souscorrigée pour le
miroir sphérique concave et surcorrigée pour le miroir sphérique
convexe.

3. — Surface de Vonde réfractée de chemin optique nul dans le cas
d'un dioptre sphérique et d'une onde incidente sphérique.

L'ovale de Descartes se rencontre encore quand on cherche la
surface de l'onde réfractée de chemin optique nul donnée par
un dioptre sphérique, le point-objet A étant à distance finie 2.

i On peut, en précisant ces indications, calculer la valeur de l'aberration. Prenons
sur l'ovale et sur son cercle osculateur au sommet deux points voisins situés à une
même distance infiniment petite h de l'axe. Menons en ces points les normales à l'ovale
et au cercle. Les angles 7 et 7o qu'elles font respectivement avec l'axe sont des infiniment
petits; leur différence j 7—7o I est l'angle du petit prisme additionnel. Pour
avoir 7, nous utilisons l'expression de tg 7 donnée dans la deuxième partie de cette
note, en développant les sinus et cosinus en série jusqu'au troisième ordre inclusivement
et tenant compte de la relation qui existe .entre les distances de deux points conjugués
au sommet d'un dioptre sphérique d'indice n et de rayon R. Nous trouvons

n + 1 •„V~~2n2~ U>*(Ai étant l'angle du rayon incident avec la droite joignant le point d'incidence au point
stigmatique objet du dioptre sphérique. La déviation imprimée par ce primse d'angle <1*

au rayon réfracté est
n.2 — 1

S(n — 1 i2

Le déplacement correspondant du point d'intersection de ce rayon avec l'axe est
<J.IP': sin <?'. Comme ^ est du troisième ordre infinitésimal et f du premier ordre,
nous pouvons remplacer sin f par la partie principale de f, c'est-à-dire par h: SP',
et IP' par SP' qui lui est égal à un infiniment petit du second ordre près. Donc

J.ni -ülni.Üil.i,*."h 2n2 h

2 Si le point-objet est à l'infini, la surface d'onde réfractée de chemin nul est rejetée
à l'infini.
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Soient 0 le centre de courbure du dioptre, AI un rayon incident

quelconque, 01 la normale (fig. 14 et 15). La circonférence menée

Fig. 14.

par A et I et tangente à 01 coupe la droite OA en un point fixe B et
OB.OA Ol2. Soient P le second point où le rayon réfracté IP

coupe la circonférence AIB, et C l'intersection de OA et de IP.
Le triangle AIP nous donne

PI sin V 1

Al sin i n

Les temps employés par la lumière pour aller de A à I dans
le premier milieu et de P à I dans le second milieu sont égaux.
Le lieu du point P est la méridienne de la surface d'onde réfractée
de chemin optique nul. Nous avons, dans les triangles PAC et
PBC,

PA sin y PB sin y— — 1

et —
1

CA sin APC CB sin BPC
'

D'où
CB sin BPC PB CB sin BAI PB
CA sin APC'PA CA sin ABI 'PA
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Le triangle AIB donne

sin BAI BI
sin A BI AI

Donc

GB _ BI PB SB PB
CÂ ~~ Ä1 ' PÄ ~~ SA

* PÄ ou
GB

GA
R — R2 : a PB

a PÄ

D'après ce que nous avons vu plus haut (II, § 1), PC est
normale à une ovale de Descartes dont deux foyers sont A et B.

SA
Un des sommets est à une distance du sommet du dioptre.

La connaissance de la nature de cette ovale donnerait directement
le sens de l'aberration pour le point A, mais le procédé artificiel
indiqué au paragraphe précédent est plus simple.

Nous signalerons encore ici, bien que l'ovale de Descartes

n'y intervienne pas, une application catoptrique de la cardioïde.
La cardioïde peut être considérée comme engendrée par un

point d'un cercle qui roule extérieurement sur un cercle égal.

4. — Condensateur cardioïde.

X

F ig. 16.

Soient 0 le centre du cercle de base, 0' une position quelconque
du centre du cercle mobile, I le point correspondant de la
cardioïde et S son point de rebroussement (fig. 16). Le trapèze
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SIO'O est isocèle. La droite IA normale à la cardioïde est bissectrice

de l'angle SIO'; O'B est parallèle à SO; 00' est bissectrice de

l'angle formé par les droites O'I et BO' prolongée. Traçons le
•cercle ayant 0 pour centre et passant par 0'.

Un rayon lumineux XO' parallèle à l'axe se réfléchit sur le
cercle suivant O'I, puis sur la cardioïde suivant IS. L'association
du miroir sphérique convexe, ayant pour centre le foyer singulier
et de rayon égal au diamètre du cercle de base, à un miroir
concave de révolution, ayant pour méridienne la cardioïde
transforme un faisceau de rayons parallèles à l'axe en un faisceau

homocentrique de sommet S. Ce système optique est stigmatique
pour le point S et le point infiniment éloigné de son axe et, de plus,
il est aplanétique, car le rayon incident et le rayon deux fois
réfléchi se coupant sur la circonférence de cercle de centre S

et de rayon SB 00', la condition d'aplanétisme (condition des

sinus) se trouve satisfaite. Ce système catoptrique est réalisé dans
le condensateur cardioïde de Zeiss, qui s'emploie avec le microscope

pour l'éclairage à fond noir et l'ultramicroscopie. Comme
on n'utilise qu'une faible portion de la cardioïde au voisinage du
point I, on la remplace par une portion de son cercle osculateur
en I. Le rayon de courbure de ce cercle se détermine facilement.
Le miroir concave employé est alors une zone empruntée à la
surface d'un miroir torique.
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