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194 M. DUFOUR

4. Condition pour que Vovale extérieure soit une courbe convexe.

— Nous avons vu plus haut comment la forme d'une équation
bipolaire nous permet de reconnaître s'il s'agit d'une ovale
intérieure ou d'une ovale extérieure. Cherchons la condition pour
qu'une ovale extérieure soit une courbe convexe. Des considérations

d'optique vont nous guider.
La relation À sini |à'| sini' nous montre que, si nous envisageons

l'ovale comme la méridienne d'un dioptre pour lequel le

premier et le second milieu ont des indices respectivement égaux
à 1 et X' et si nous supposons un point lumineux placé en F dans
le premier milieu, les rayons réfractés forment un faisceau homo-

centrique de centre FC Supposons l'ovale rapportée à ses foyers
intérieurs et prenons F2 comme point-objet. Si l'ovale possède

en B2 un point méplat, les rayons lumineux venant de F2 sont
réfractés au voisinage de B2 comme ils le seraient sous l'incidence
normale par un dioptre plan, et on a A2F1B1 ^FaBg ou

l2bl IxK. Si la courbe tourne en B2 sa concavité vers F2,

l'image F1 se rapproche de B2, et on a l2b2< l1b1 : c'est la
condition pour que l'ovale extérieure soit une courbe convexe.

2. — Points situés en d,ehors de Vaxe et présentant un maximum
ou un minimum de courbure.

Soit M un des points de contact de la circonférence menée

par F1 et F2 et bitangente à l'ovale. En ce point M, l'angle
FjMFa, formé par les rayons vecteurs, passe par un maximum.
Il est égal à (ix + i2) pour l'ovale intérieure (fig. 6) et à (i± — i2)

pour l'ovale extérieure. Nous avons donc, en M, d(ix ± i2) 0.

D'autre part, de la relation

lx sin ix X2 sin /2 nous tirons kx cos ix dix X2 cos i2 di2

relation simple qu'on trouve aisément par des considérations d'optique. Dans le plan
de la figure, les rayons lumineux émanés de F2 sont réfractés en ces points par un
dioptre ayant l'ovale pour méridienne comme ils le seraient par un dioptre plan oscula-
teur. La relation qui détermine la position de la focale tangentielle est

>1 COS2 il >2 COS2 i2

Pl ~ P2
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Par suite d{ix ± i2) 0 équivaut à
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cos /'- \1 ± 1 1)dh 0
À2COSf2/

Le facteur entre parenthèses ne pouvant s'annuler, dix 0

et di2 — 0; alors îx et i2 passent en M par un maximum. Soit.

MJ la normale.

Prenons sur l'ovale un point M' infiniment voisin de M;
la droite F1M/ prolongée rencontre la circonférence au point P.
Les angles inscrits FXPJ et FXMJ sont égaux. La normale M'?
faisant avec FXM' un angle égal à ix au second ordre près, puisque

est un maximum, est parallèle à PJ et, puisque M'P est du
second ordre, cette normale passe, au second ordre près, par le

point J. J est par conséquent un point de rebroussement de la
développée et en M la courbure de l'ovale passe par un minimum
(pour l'ovale intérieure) par un maximum (pour l'ovale
extérieure). Nous voyons donc que le cercle tangent en M ayant un
rayon égal à la moitié du rayon de courbure en ce point passe

par les deux foyers intérieurs. Entre les angles it et i2l les rayons
vecteurs px et p2 et le rayon de courbure R nous avons en M
les relations

2R
cos i1 cos /2

En tout point de l'ovale y <px — <p2 + H d'où

dy dv1 — di1 dy2 + di2

En M on a (iy d(p2.
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