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194 M. DUFOUR

4. Condition pour que Uovale extérieure soit une courbe convexe.
— Nous avons vu plus haut comment la forme d’une équation
bipolaire nous permet de reconnaitre §’il s’agit d’une ovale
intérieure ou d’une ovale extérieure. Cherchons la condition pour
qu'une ovale extérieure soit une courbe convexe. Des considéra-
tions d’optique vont nous guider.

La relation 2 sinz = |1’| sini’ nous montre que, si nous envisa-
geons 'ovale comme la méridienne d’'un dioptre pour lequel le
premier et le second milieu ont des indices respectivement égaux
a A et A" et si nous supposons un point lumineux placé en I dans
le premier milieu, les rayons réfractés forment un faisceau homo-
centrique de centre I'’. Supposons 'ovale rapportée a ses foyers
intérieurs et prenons F, comme point-objet. Si 1'ovale possede
en B, un point méplat, les rayons lumineux venant de F, sont
réfractés au voisinage de B, comme ils le seraient sous I'incidence
normale par un dioptre plan, et on a A,F,B; = 3, F,B, ou
dyb, = A b,. Si la courbe tourne en B, sa concavité vers F,,
I’image F, se rapproche de B,, et on a 2,0,<2,b,: c’est la
condition pour que ’ovale extérieure soit une courbe convexe.

2. — Points situés en dehors de U'axe et présentant un maximum
ou un mintmum de courbure.

Soit M un des points de contact de la circonférence menée
par F; et F, et bitangente & I'ovale. En ce point M, I’angle
F,MF,, formé par les rayons vecteurs, passe par un maximuin.
Il est égal a (i, + t,) pour 'ovale intérieure (fig. 6) et a (1; —1,)
pour I'ovale extérieure. Nous avons donc, en M, d(i; & iy) = 0.
D’autre part, de la relation

Ay sing = A, siniy, , nous tirons A cos iy diy = Ay cos iy diy .

relation simple qu’on trouve aisément par des considérations d’optique. Dans le plan
de la figure, les rayons lumineux émanés de Fg sont réfractés en ces points par un
dioptre ayant ’ovale pour méridienne comme ils le seraient par un dioptre plan oscula-
teur. La relation qui détermine la position de la focale tangentielle est
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Par suite d (¢; + i5) = 0 équivaut a

)\ cos 7
1>(l11 =
o COS Iy

Le facteur entre parenthéses ne pouvant s’annuler, di; = 0
et di, = 0; alors i; et i, passent en M par un maximum. Soit
MJ la normale.

Fig. 6.

Prenons sur l'ovale un point M’ infiniment voisin de M;
la droite F; M’ prolongée rencontre la circonférence au point P.
Les angles inscrits F;PJ et ;MJ sont égaux. La normale M’,
faisant avec ;M un angle égal a 7, au second ordre prés, puisque
i, est un maximum, est paralléle & PJ et, puisque M'P est du
second ordre, cette normale passe, au second ordre prés, par le
point J. J est par conséquent un point de rebroussement de la
développée et en M la courbure de ’ovale passe par un minimum
(pour I'ovale intérieure) par un maximum (pour 'ovale exté-
rieure). Nous voyons donc que le cercle tangent en M ayant un
rayon égal a la moitié du rayon de courbure en ce point passe
par les deux foyers intérieurs. Entre les angles i, et i,, les rayons
vecteurs p, et p, et le rayon de courbure R nous avons en M
les relations

2R —_ Pl — P2

Cos 14 cOoSs Iy

En tout point de Povale y = ¢; — t; = ¢, + i, d’ou
dy = do, — diy = do, + di, .

En M on a dy = do, = dg,.
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