Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 28 (1929)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES OVALES DE DESCARTES

Autor: Dufour, M.

Kapitel: III. Points ou l'ovale présente un maximum ou un minimum DE

COURBURE.

DOI: https://doi.org/10.5169/seals-22597

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

nous pouvons déterminer ρ' et par suite ρ . Alors le point I est connu et CI est la normale cherchée.

Pour trouver l'angle γ de la normale avec l'axe, projetons le contour II'B sur l'axe focal et sur une droite qui lui soit perpendiculaire. Désignant par ϕ et ϕ' les angles des rayons vecteurs avec l'axe, nous obtenons

 $II'\cos\gamma - \lambda\cos\phi - \lambda'\cos\phi' = 0 \ , \quad II'\sin\gamma - \lambda\sin\phi - \lambda'\sin\phi' = 0 \ .$

D'où

$$tg\,\gamma = \frac{\lambda\,\sin\phi\,+\,\lambda'\,\sin\phi'}{\lambda\,\cos\phi\,+\,\lambda'\,\sin\phi'}\,.$$

III. POINTS OU L'OVALE PRÉSENTE UN MAXIMUM OU UN MINIMUM DE COURBURE.

Par raison de symétrie, les sommets situés sur l'axe correspondent à un maximum ou à un minimum de courbure.

1. Construction du centre de courbure relatif à un sommet. — Si le point I (fig. 4 et 5) se rapproche indéfiniment du sommet A, le point C, intersection de la normale en I avec FF'_1 , tend vers une position limite C_0 qui est le centre de courbure en A, puisque par raison de symétrie, ce centre de courbure doit se trouver sur FF' et on a

$$\frac{C_0 F}{C_0 F'} = \frac{|\lambda'|}{|\lambda|} \frac{C_0 A}{C_0 A'}.$$

Le point C_0 divisant FF' dans un rapport donné se détermine par une construction bien connue et cette construction est applicable à l'ellipse ($\lambda = \lambda'$) et à l'hyperbole ($\lambda = -\lambda'$).

2. Sommets de l'ovale intérieure. — Quand le point I se déplace sur une ovale intérieure à partir du sommet A_1 , voisin du foyer F_1 , ρ_1 augmente et l'équation de la courbe $\lambda_1 \rho_1 + \lambda_2 \rho_2 = -h_3$ montre que ρ_2 diminue. Alors $\rho_1 : \rho_2$ augmente, ainsi que $CF_1 : CF_2$

et le point C se rapproche de F_2 et de A_2 . La courbure passe donc par un maximum en A_1 . On verrait de même qu'elle passe par un maximum en A_2 .

3. Sommets de l'ovale extérieure. — Considérons l'ovale extérieure comme la transformée de l'ovale intérieure conjuguée en prenant F_1 pour centre d'inversion. Le cercle osculateur en A_1 devient par inversion le cercle osculateur en B_1 et comme le cercle osculateur en A_1 est intérieur à l'ovale intérieure, le cercle osculateur en B_1 est extérieur à l'ovale extérieure. D'autre part, le foyer F_1 est intérieur au cercle osculateur en A_1 , puisque les normales à l'ovale intérieure rencontrent l'axe entre les deux foyers: F_1 est donc intérieur au cercle osculateur en B_1 : en ce sommet la courbe tourne sa concavité vers F_1 et présente un minimum de courbure.

En ce qui concerne le sommet B₂, il faut distinguer plusieurs cas:

- α) Si le foyer F_1 est à l'intérieur du cercle osculateur en A_2 , il est aussi à l'intérieur du cercle osculateur en B_2 et, ce cercle étant extérieur à la courbe, l'ovale extérieure tourne en B_2 sa concavité vers F_1 et présente un minimum de courbure.
- β) Si le cercle osculateur en A_2 passe par F_1 , il se transforme en une droite, et l'ovale extérieure présente au sommet B_2 un point méplat.
- γ) Enfin, si le foyer F_1 est extérieur au cercle osculateur en A_2 , il est aussi extérieur au cercle osculateur en B_2 et, ce cercle étant extérieur à la courbe, l'ovale extérieure tourne en B_2 sa convexité vers F_1 et présente un maximum de courbure 2 .

² Dans ce dernier cas, le foyer F_1 est intérieur au cercle osculateur en A_1 et extérieur au cercle osculateur en A_2 . Il y a donc sur chacune des moitiés de l'ovale intérieure entre A_1 et A_2 un point tel que le cercle osculateur en ce point passe par F_1 , et le cercle osculateur au point correspondant de l'ovale extérieure est une droite: ce point homo-

logue est un point d'inflexion.

¹ On peut obtenir le même résultat d'une façon plus classique, mais qui exige quelques calculs. Soit un cercle de rayon R tangent au sommet de l'ovale. Prenons pour axes de coordonnées l'axe et la tangente au sommet. Les coordonnées d'un point P du cercle sont $x=R(1-\cos \varphi)$ et $y=R\sin \varphi$. Dans x et y remplaçons $\cos \varphi$ et $\sin \varphi$ par leurs développements en série en fonction de φ et négligeons les puissances supérieures à la quatrième. Calculons F_1P et F_2P . Portant leurs valeurs dans le premier membre de l'équation de l'ovale, nous obtenons une expression de la forme $p\varphi^2 + q\varphi^4$. Ecrivons que le coefficient de φ^2 est nul: l'équation p=0 nous fait connaître le rayon R_0 du cercle osculateur. Le signe du coefficient de φ^4 , quand on y remplace R par R_0 , permet de savoir si la courbure au sommet envisagé est maxima ou minima.

Il y a entre les valeurs de ho_1 , ho_2 , i_1 , i_2 qui correspondent aux points d'inflexion une

4. Condition pour que l'ovale extérieure soit une courbe convexe.

— Nous avons vu plus haut comment la forme d'une équation bipolaire nous permet de reconnaître s'il s'agit d'une ovale intérieure ou d'une ovale extérieure. Cherchons la condition pour qu'une ovale extérieure soit une courbe convexe. Des considérations d'optique vont nous guider.

La relation $\lambda \sin i = |\lambda'| \sin i'$ nous montre que, si nous envisageons l'ovale comme la méridienne d'un dioptre pour lequel le premier et le second milieu ont des indices respectivement égaux à λ et λ' et si nous supposons un point lumineux placé en F dans le premier milieu, les rayons réfractés forment un faisceau homocentrique de centre F'. Supposons l'ovale rapportée à ses foyers intérieurs et prenons F_2 comme point-objet. Si l'ovale possède en B_2 un point méplat, les rayons lumineux venant de F_2 sont réfractés au voisinage de B_2 comme ils le seraient sous l'incidence normale par un dioptre plan, et on a $\lambda_2 F_1 B_1 = \lambda_1 F_2 B_2$ ou $\lambda_2 b_1 = \lambda_1 b_2'$. Si la courbe tourne en B_2 sa concavité vers F_2 , l'image F_1 se rapproche de B_2 , et on a $\lambda_2 b_2 < \lambda_1 b_1$: c'est la condition pour que l'ovale extérieure soit une courbe convexe.

2. — Points situés en dehors de l'axe et présentant un maximum ou un minimum de courbure.

Soit M un des points de contact de la circonférence menée par F_1 et F_2 et bitangente à l'ovale. En ce point M, l'angle $F_1 M F_2$, formé par les rayons vecteurs, passe par un maximum. Il est égal à (i_1+i_2) pour l'ovale intérieure (fig. 6) et à (i_1-i_2) pour l'ovale extérieure. Nous avons donc, en M, $d(i_1\pm i_2)=0$. D'autre part, de la relation

 $\lambda_1 \sin i_1 = \lambda_2 \sin i_2$, nous tirons $\lambda_1 \cos i_1 di_1 = \lambda_2 \cos i_2 di_2$.

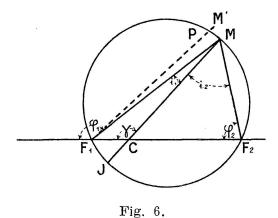
$$\frac{\lambda_1\cos^2i_1}{\rho_1}=\frac{\lambda_2\cos^2i_2}{\rho_2}.$$

relation simple qu'on trouve aisément par des considérations d'optique. Dans le plan de la figure, les rayons lumineux émanés de F_2 sont réfractés en ces points par un dioptre ayant l'ovale pour méridienne comme ils le seraient par un dioptre plan osculateur. La relation qui détermine la position de la focale tangentielle est

Par suite $d(i_1 \pm i_2) = 0$ équivaut à

$$\left(1 \pm \frac{\lambda_1 \cos i_1}{\lambda_2 \cos i_2}\right) di_1 = 0.$$

Le facteur entre parenthèses ne pouvant s'annuler, $di_1 = 0$ et $di_2 = 0$; alors i_1 et i_2 passent en M par un maximum. Soit MJ la normale.



Prenons sur l'ovale un point M' infiniment voisin de M; la droite F_1 M' prolongée rencontre la circonférence au point P. Les angles inscrits F_1 PJ et F_1 MJ sont égaux. La normale M', faisant avec F_1 M' un angle égal à i_1 au second ordre près, puisque i_1 est un maximum, est parallèle à PJ et, puisque M'P est du second ordre, cette normale passe, au second ordre près, par le point J. J est par conséquent un point de rebroussement de la développée et en M la courbure de l'ovale passe par un minimum (pour l'ovale intérieure) par un maximum (pour l'ovale extérieure). Nous voyons donc que le cercle tangent en M ayant un rayon égal à la moitié du rayon de courbure en ce point passe par les deux foyers intérieurs. Entre les angles i_1 et i_2 , les rayons vecteurs ρ_1 et ρ_2 et le rayon de courbure R nous avons en M les relations

$$2R = \frac{\rho_1}{\cos i_1} = \frac{\rho_2}{\cos i_2} .$$

En tout point de l'ovale $\gamma = \varphi_1 - i_1 = \varphi_2 + i_2$ d'où

$$d\gamma = d\varphi_1 - di_1 = d\varphi_2 + di_2$$
.

En M on a $d\gamma = d\varphi_1 = d\varphi_2$.