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190 M. DUFOUR

D’autre part,
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Désignons par F, le foyer singulier; ses distances aux trois

foyers ordinaires sont !

I, est extérieur a I'intervalle I, 17, et placé du coté de I,.

II. — NORMALE A L’OVALE.

’

L’ovale étant donnée par I’équation 2p + 1'c’ = h rapportée
a deux foyers F et F’, nous prenons sur la courbe un point I,

Fig. 4. Fig. 5.

nous portons sur les rayons vecteurs FI et F’'I des segments
IB =1 et IB"=1’, et nous complétons le parallélogramme
BIB'T’ (fig. 4 et 5): sa diagonale II’ est la normale & 'ovale.

1 En prenant I'g pour origine, I'¢quation cartésienne de l'ovale prend une forme
ou F Iy, FFe et I Fg interviennent de facon symdétrique, se prétant de facon commode
a I’étude de la courbe.




LES OVALES DE DESCARTES 191

La normale rencontre 'axe FF’ en un point G situé entre F et}F’
si 7 et ).’ sont de méme signe (fig. 4) et en dehors de l'intervalle
FF’ si % et 2’ sont de signe contraire (fig. b). Le tableau des
équations bipolaires montre que pour I'ovale intérieure, la nor-
male passe entre F; et F, et que pour l'ovale extérieure, elle
rencontre I’axe en des points extérieurs & 'intervalle F; F,.

Soient i, i’ et v les angles que fait la normale avec les rayons
vecteurs et avec 'axe FF'. Les deux triangles CFI et CF’'I nous
donnent |

CF sin ¢ cr’ sin
- - et == "
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Dans le triangle IBI'

sin i L [)\’l

sin ¢/ f)\

Done
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Le rapport des segments déterminés sur F¥' par la normale a
Povale est égal au produit du rapport des rayons vecteurs adjacents
par un facteur constant.

Réciproquement, si la normale @ une courbe détermine sur
la droite passant par deux points fixes F et F' deux segments dont
le rapport est égal au produit du rapport des deux rayons vecteurs
adjacents par un facteur constant, la courbe est une ovale de Des-
cartes. En effet, si

FC _ [V] ¢

F'C = 1)\ I .O/ )

nous pouvons construire sur les directions des rayons vecteurs
un parallélogramme de cotés égaux a A et 2.

Si nous connaissons le point d’intersection G d’une normale
avec I’axe, nous connaitrons le rapport p: p’ et, si nous écrivons
Iéquation de la courbe sous la forme
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nous pouvons déterminer p’ et par suite p. Alors le point I est
connu et CI est la normale cherchée.

Pour trouver I’angle - de la normale avec 'axe, projetons le
contour I1'B sur I’axe focal et sur une droite qui lui soit perpen-
diculaire. Désignant par ¢ et ¢’ les angles des rayons vecteurs
avec ’axe, nous obtenons

Il"cosy — hcoso — Wceose = 0, IVsinv nsing — Asine' = 0 .

9 \
D’ou
Asing + A" sin ¢’

BT

cos o + 2 sin ¢’

III. PoINTS OU LOVALE PRESENTE UN MAXIMUM OU UN MINIMUM
DE COURBURE. '

1. — Sommets de Uovale.

Par raison de symétrie, les sommets situés sur I’axe correspon-
dent & un maximum ou & un minimum de courbure.

1. Construction du centre de courbure relatif a un sommet. —
Si le point I (fig. 4 et 5) se rapproche indéfiniment du sommet A,
le point C, intersection de la normale en I avec FF;, tend vers
une position limite C, qui est le centre de courbure en A, puisque

par raison de symétrie, ce centre de courbure doit se trouver

sur FF' et on a
Cy ¥
C
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Le point G, divisant FF’ dans un rapport donné se détermine
par une construction bien connue et cette construction est appli-
cable a I’ellipse (A = ') et & ’hyperbole (A = — 1').

2. Sommets de l'ovale intérieure. — Quand le point I se déplace
sur une ovale intérieure a partir du sommet A,, voisin du foyer
F,, p, augmente et ’équation de la courbe %A ¢y + 250, = — hy
montre que p, diminue. Alors p, : p, augmente, ainsi que CF, : CF,
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