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190 M. DUFOUR

D'autre part,

A0A' — a2. F2 A à1 (1a — F2A) d'où F2A

H0 B a2 F2 B MK2B — \c) d'où F2B

4 À1 c

Par suite

F„C F, A + F» B 1 1 \ 2 A" c

L + À2 L ~~ L/ À"

Désignons par Fs le foyer singulier; ses distances aux trois
foyers ordinaires sont1

F,. F,
2 \"y C

FF,
2X"

F F.
cl2 I

a" — À:, '
Xj — À;,

Fs est extérieur à l'intervalle F, F2 et placé du côté de Fv

II. — Normale a l'ovale.

L'ovale étant donnée par l'équation \p + )/p' h rapportée
à deux foyers F et F', nous prenons sur la courbe un point I,

Fig. 5.

nous portons sur les rayons vecteurs FI et F'I des segments
IB a et IB' À', et nous complétons le parallélogramme
BIB'I' (fig. 4 et 5): sa diagonale II' est la normale à l'ovale.

i En prenant Fs pour origine, l'équation cartésienne de l'ovale prend une forme
où FgFi, FsF2 et FSF3 interviennent de façon symétrique, se prêtant de façon commode
à l'étude de la courbe.
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La normale rencontre l'axe FF' en un point C situé entre F etF'
si / et /'sont de même signe (fig. 4) et en dehors de l'intervalle
FF' si a et sont de signe contraire (fig. 5). Le tableau des

équations bipolaires montre que pour l'ovale intérieure, la
normale passe entre F, et F2 et que pour l'ovale extérieure, elle

rencontre l'axe en des points extérieurs à l'intervalle FjFa-
Soient i,ïety les angles que fait la normale avec les rayons

vecteurs et avec l'axe FF'. Les deux triangles GFI et CF'I nous
donnent

CF sin | C V sin if
o sin y p' sin y

D'où
CF sin i p

CF' sin i' p/

Dans le triangle IBI'
sin i | X' |

sin i' | X |

Donc

c»f=m p

CF7 j X |

'
p'

'

Le rapport des segments déterminés sur FF' par la normale à

Vovale est égal au produit du rapport des rayons vecteurs adjacents

par un facteur constant.

Réciproquement, si la normale à une courbe détermine sur
la droite passant par deux points fixes Y et Y' deux segments dont
le rapport est égal au produit du rapport des deux rayons vecteurs

adjacents par un facteur constant, la courbe est une ovale de

Descartes. En effet, si
FC

_
| V | _p

fc — ]T[ ' 7' '

nous pouvons construire sur les directions des rayons vecteurs
un parallélogramme de côtés égaux à X et À'.

Si nous connaissons le point d'intersection C d'une normale
avec l'axe, nous connaîtrons le rapport p : p' et, si nous écrivons
l'équation de la courbe sous la forme

h
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nous pouvons déterminer p' et par suite p. Alors le point I est

connu et CI est la normale cherchée.
Pour trouver l'angle y de la normale avec l'axe, projetons le

contour IPB sur l'axe focal et sur une droite qui lui soit
perpendiculaire. Désignant par <p et 9' les angles des rayons vecteurs
avec l'axe, nous obtenons

II' cos Y — à cos cp — h cos cp' 0 IF sin y — a sin <p — F sin <p' — 0

D'où
A sin cd 4- )/ sin cd'

t g Y t
Â COS CD -F Â sill CD

III. Points ou l'ovale présente un maximum ou un minimum
DE COURBURE.

1. — Sommets de Vovale.

Par raison de symétrie, les sommets situés sur l'axe correspondent

à un maximum ou à un minimum de courbure.

1. Construction du centre de courbure relatif à un sommet. —
Si le point I (fig. 4 et 5) se rapproche indéfiniment du sommet A,
le point C, intersection de la normale en I avec FF^, tend vers
une position limite C0 qui est le centre de courbure en A, puisque
par raison de symétrie, ce centre de courbure doit se trouver
sur FF' et on a

Col 1ZJ r:«A
C0 1' | À | U0 A

Le point G0 divisant FF' dans un rapport donné se détermine

par une construction bien connue et cette construction est applicable

à l'ellipse (X — À') et à l'hyperbole (X — X').

2. Sommets de Vovale intérieure. — Quand le point I se déplace
sur une ovale intérieure à partir du sommet A1? voisin du foyer
Fx, px augmente et l'équation de la courbe ).1p1 + X2 62 — h3

montre que p2 diminue. Alors px : p2 augmente, ainsi que : CF2
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