Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 28 (1929)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES OVALES DE DESCARTES

Autor: Dufour, M.

Kapitel: 4. — Sécantes passant par un foyer. **DOI:** https://doi.org/10.5169/seals-22597

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Partons du sommet A_1 : l'inversion m_1^2 nous mène en B_1 , puis l'inversion — m_2^2 nous mène en A_2 , et enfin l'inversion m_3^2 nous ramène en A_1 . Donc m_1^2 . m_2^2 . $m_3^2 = 1$.

Le foyer F_3 a même puissance par rapport aux deux cercles de diamètre A_1A_2 et B_1B_2 : il est donc sur leur axe radical. Puisque, connaissant l'équation bipolaire $\lambda_1\,\varepsilon_1 - \lambda_2\,\varepsilon_2 + h_3 = 0$ d'une ovale, on en déduit facilement l'équation de l'ovale conjuguée et la position des sommets de cette dernière, nous obtenons ainsi une seconde construction du foyer extérieur F_3 . On voit sans peine que F_1 et F_2 pourraient aussi se trouver par une construction d'axe radical: F_1 est sur l'axe radical des deux cercles décrits sur A_1B_1 et A_2B_2 comme diamètres, et la corde commune aux deux cercles décrits sur A_1B_1 et A_2B_2 comme diamètres passe par F_2 .

Cercle tangent à l'ovale et passant par deux points donnés dont un de ses foyers. — L'inversion anallagmatique autour du foyer par lequel doit passer le cercle à construire transforme ce cercle en une droite tangente à l'ovale et passant par le point inverse de l'autre point donné. Le point inverse de son point de contact avec l'ovale est le point où le cercle à construire touche l'ovale. En particulier, le cercle passant par F_1 et F_2 et tangent à l'ovale se déduit par inversion autour du foyer F_1 , par exemple, de la tangente à l'ovale conjuguée qui passe par l'inverse de F_2 .

4. — Sécantes passant par un foyer.

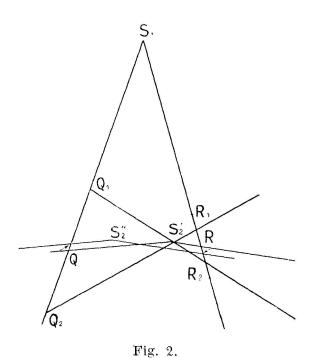
D'une propriété bien connue de la transformation par rayons vecteurs réciproques, il résulte immédiatement que: 1° toute sécante à l'ovale menée par F_1 est bissectrice des directions des tangentes aux deux points situés d'un même côté de l'axe où elle coupe les deux ovales conjuguées; 2° toute sécante menée par F_2 est bissectrice des directions des tangentes aux deux points situés de part et d'autre de l'axe où elle coupe ces deux ovales; 3° toute sécante menée par F_3 est bissectrice des directions des tangentes aux deux points où elle coupe chacune des ovales intérieure et extérieure.

Si entre l'équation de l'ovale en coordonnées polaires rapportée à un de ses foyers et l'équation d'une droite quelconque de son plan

$$\rho(\rho\cos\theta + \eta\sin\theta) = r$$

on élimine θ , on obtient une équation du quatrième degré en ρ dont les quatre racines sont les distances des foyers aux points d'intersection de la droite et de la courbe. Dans cette équation le quotient des coefficients de ρ^3 et de ρ^4 est une constante: donc la somme des quatre rayons vecteurs menés d'un foyer aux points d'intersection de la courbe avec une droite quelconque est constante. Nous pouvons le voir par des considérations géométriques simples dans le cas où la sécante passe par le foyer.

Par l'axe de l'un des cônes, S_1 par exemple, menons un plan vertical quelconque V'. L'intersection de V' avec le cône S_2 est une hyperbole à axe réel vertical. Le centre S_2' de cette hyperbole est toujours dans le plan horizontal qui passe par S_2 , et l'angle de ses asymptotes est égal à l'angle au sommet du cône S_2 (fig. 2).



L'intersection de V' avec le cône S₁ se compose de deux génératrices de ce cône. Soient Q₁, Q₂, R₁, R₂ les points d'intersection de ces deux génératrices avec l'hyperbole, et S₂Q, S₂R les diamètres conjugués des cordes Q₁ Q₂ et R₁ R₂. Ces diamètres sont comme les cordes correspondantes également inclinés sur la verticale. Nous avons

$$S_1\,Q_1\,+\,S_1\,Q_2\,=\,2S_1\,Q \qquad et \qquad S_1\,R_1\,+\,S_1\,R_2\,=\,2S_1\,R \ . \label{eq:s1}$$

Faisons tourner le plan V' autour de l'axe du cône S_1 : l'angle des deux génératrices passant par S_1 ne change pas, S_2 se déplace dans V' le long d'une droite horizontale et vient en S_2 . L'angle des asymptotes ne change pas et par suite le système des deux diamètres conjugués subit une translation horizontale: les déplacements de Q et R sur les génératrices de S_1 sont égaux et de sens contraire et la somme $S_1Q + S_1R$ reste constante, quelle que soit l'orientation de V'. Projetons sur la trace horizontale de V': nous voyons que la somme des distances d'un foyer aux points d'intersection de la courbe avec une sécante quelconque passant par ce foyer est constante.

Si nous prenons comme sécante l'axe F_1F_2 , nous voyons de plus que la constante est la même pour les foyers F_1 et F_2 .

Les trois points F₁, F₂, F₃. auxquels leur propriété optique a fait donner le nom de foyers, sont aussi des foyers répondant à la définition de Plücker: le calcul prouve que ce sont les points d'intersection de tangentes menées à l'ovale par les points cycliques du plan.

L'ovale possède aussi un foyer singulier: elle passe par les points cycliques du plan et a des asymptotes qui la touchent en ces points.

Si nous supposons que S_2 se déplace sur la verticale F_2S_2 (fig. 1), c'est-à-dire si nous faisons varier h_3 en laissant fixes λ_1 et λ_2 , nous obtenons une famille d'ovales définies par la relation $\lambda_1\rho_1 + \lambda_2\rho_2 = -h_3$, où h_3 est un paramètre variable. Dans l'équation en coordonnées cartésiennes correspondante, les termes du quatrième et du troisième degré sont indépendants de h_3 , et, par suite, toutes ces ovales ont les mêmes asymptotes ¹. Il nous

¹ L'équation cartésienne de l'ovale de Descartes ne diffère que par une constante de celle du limaçon qui fait partie de la famille. L'ovale est le lieu des points d'égale puissance par rapport au limaçon.