Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 28 (1929)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES OVALES DE DESCARTES

Autor: Dufour, M.

Kapitel: § 1. — Les trois foyers ordinaires. **DOI:** https://doi.org/10.5169/seals-22597

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR LES OVALES DE DESCARTES

PAR

M. Dufour (Nancy).

C'est au sujet de leurs applications à l'Optique que j'ai été conduit à m'occuper des ovales de Descartes. La présente note a pour but d'en exposer certaines propriétés d'une façon assez simple et intuitive ¹.

I. — L'OVALE PROJECTION D'UNE COURBE GAUCHE.

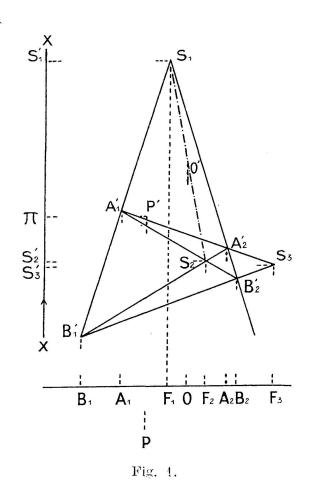
On sait que l'intersection de deux cônes de révolution à axe vertical a pour projection horizontale une ovale de Descartes, et pour projection verticale sur le plan V passant par les axes des deux cônes une parabole à axe horizontal. Les foyers F_1 et F_2 de l'ovale sont les projections horizontales des sommets S_1 et S_2 des deux cônes. En faisant intervenir ainsi la géométrie dans l'espace, on peut établir assez simplement certaines propriétés de l'ovale.

§ 1. — Les trois foyers ordinaires.

Soient A_1' , A_2' , B_1' , B_2' les points d'intersection des génératrices situées dans le plan V (fig. 1). Les angles $B_1'A_1'B_2'$ et $B_1'A_2'B_2'$ étant l'un et l'autre égaux à la somme des demi-angles au sommet des deux cônes S_1 et S_2 , les quatre points A_1' , A_2' , B_2' , B_1' sont sur une circonférence. Par suite les angles $B_2'A_1'A_2'$ et $B_2'B_1'A_2'$ sont égaux, et on en conclut sans peine que les deux droites

¹ Ce travail a été transmis à la Rédaction, par M. Elie Cartan, le 20 avril 1928.

 $A'A_2'$ et $B_1'B_2'$ sont également inclinées sur la verticale. On peut donc les considérer comme étant deux génératrices d'un troisième cône de révolution à axe vertical ayant pour sommet leur point de rencontre S_3 . L'intersection des deux cônes S_1 et S_3 a pour projection sur le plan V la même parabole à axe horizontal que l'intersection des cônes S_1 et S_2 , car les projections de ces deux courbes d'intersection passent par A_1' , A_2' , B_1' , B_2' et par quatre points ne passent que deux paraboles (dont les axes



n'ont pas la même direction). Ainsi les trois cônes S_1 , S_2 , S_3 ont une ligne commune dont la projection horizontale est une ovale de Descartes. Cette ovale peut donc être définie par deux quelconques des trois cônes et la projection horizontale F_3 de S_3 est son troisième foyer. L'ovale a deux foyers intérieurs F_1 et F_2 et un foyer extérieur placé du côté du sommet intérieur F_2 , pour lequel la distance au sommet correspondant de la courbe a la plus petite valeur ($F_2A_2 < F_1A_1$).

La ligne commune aux trois cônes se compose de deux portions à chacune desquelles correspond une ovale distincte. Nous pouvons donner à ces deux ovales conjuguées les noms d'ovale intérieure et d'ovale extérieure. Les deux ovales conjuguées, qui sont données par une même équation rationnelle du quatrième degré, présentent des caractères très différents en ce qui concerne leurs normales.

Construction géométrique du troisième foyer. — Supposons une ovale de Descartes donnée par deux de ses foyers (F₁ et F₂ par exemple) et par ses sommets A₁ et A₂. Sur les lignes de rappel menées par A₁ et F₁, prenons arbitrairement deux points A₁ et S₁, situées à des distances différentes de l'axe A₁A₂. Le cône S₁ est défini par sa génératrice S₁A₁. L'intersection de son autre génératrice contenue dans le plan de la figure avec la ligne de rappel menée par A2 nous donne le point A2. Prenons sur la ligne de rappel menée par F₂ le point S₂ tel que les droites S₂A'₁ et S₂A'₂ fassent des angles égaux avec la verticale ¹. Ces droites déterminent les points B' et B', et l'intersection de A' A' avec B'₁B'₂ nous donne le sommet S₃ qui se projette en F₃ sur l'axe de l'ovale. En faisant varier les positions de A' et S₁, qui ont été prises arbitraitement sur les lignes de rappel, nous serions amenés à tracer des figures affines, et nous obtiendrions toujours le même point F₃.

On voit facilement comment il conviendrait de modifier la construction, si le foyer extérieur F₃ figurait parmi les données.

Calcul des coordonnées de S_3 . — Calculons les coordonnées du point S_3 par rapport à un système d'axes rectangulaires O_x , O_y situés dans le plan V, l'axe des y étant parallèle aux axes des cônes, l'origine O' étant le milieu de S_1 S_2 . Soit 2c la distance F_1 F_2 des deux foyers intérieurs et 2d la différence des cotes de S_1 et de S_2 . Les coordonnées de S_1 et S_2 sont respectivement (-c, d) et (c, -d). Dans le quadrilatère complet $A_1 A_2 B_2 B_1$,

¹ Ce point est à l'intersection de la ligne de rappel F_2S_2 avec la droite passant par A_1' et par le symétrique de A_2' par rapport à cette ligne de rappel; ce point tombe à l'intérieur du cone S_1 . — Nous avons supposé l'ovale donnée par deux foyers et par ses deux sommets. On pourrait supposer donnés les deux foyers et deux points quelconques de la courbe: il serait facile alors de déterminer les contours apparents des deux cônes correspondant à ces foyers, et on serait ramené au cas pour lequel est tracée la figure 1.

le faisceau $S_1(A_1', S_2, A_2', S_3)$ est un faisceau harmonique. Dans ce faisceau, les deux génératrices de S_1 ont pour équations

$$\Delta = y - d + \lambda_1(x+c) = 0$$
 et $\Delta' = y - d - \lambda_1(x+c) = 0$.

L'équation de la droite S_1 S_2 est de la forme $\Delta + \mu \Delta' = 0$. En exprimant que cette droite passe par S_2 nous trouvons

$$\mu = \frac{\lambda_1 c - d}{\lambda_1 c + d} .$$

L'équation de la droite S_1 S_3 , conjuguée de S_1 S_2 par rapport à Δ et Δ' est $\Delta - \mu \Delta' = 0$, ou, réductions faites,

$$\lambda_1^2 cx + d \cdot y = -(\lambda_1^2 c^2 - d^2)$$
.

Grâce au choix fait pour Ox et Oy, il nous suffit pour obtenir l'équation de $S_2 S_3$, de changer les signes de c et d et de remplacer λ_1 par λ_2 , ce qui donne

$$\lambda_2^2 cx + d \cdot y = \lambda_2^2 c^2 - d^2 \cdot$$

Les coordonnées ξ et η du point S_3 sont les racines du système formé par ces deux équations. On a

$$\xi = - \, c \, rac{\lambda_1^2 \, + \, \lambda_2^2}{\lambda_1^2 \, - \, \lambda_2^2} \, + \, 2 \, rac{d^2}{c} \cdot rac{1}{\lambda_1^2 \, - \, \lambda_2^2} \quad {
m et} \quad au_i = - \, d \, rac{\lambda_1^2 \, + \, \lambda_2^2}{\lambda_1^2 \, - \, \lambda_2^2} \, + \, 2 \, rac{c^2}{d} \, rac{\lambda_1^2 \, \, \lambda_2^2}{\lambda_1^2 \, - \, \lambda_2^2} \; .$$

Ainsi ξ est la distance du foyer extérieur de l'ovale au milieu 0 de F_1F_2 . Soient α_1 et α_2 les demi-angles au sommet des deux cônes S_1 et S_2 ; supposons $\alpha_2 > \alpha_1$, alors $\cot \alpha_2 < \cot \alpha_1$ ou $\lambda_2 < \lambda_1$. Comme $(\lambda_1^2 - \lambda_2^2)$ est positif, ξ a le signe de $-c^2(\lambda_1^2 + \lambda_2^2) + 2d^2$, c'est-à-dire de

$$2\frac{d^2}{c^2} - \cot^2 \alpha_1 - \cot^2 \alpha_2 .$$

Mais d:c est la cotangente de l'angle aigu β que fait la droite S_1S_2 avec la verticale et, puisque la portion S_1S_2 de cette droite est intérieure aux deux cônes S_1 et S_2 , on a $\beta < \alpha_1 < \alpha_2$ et, par suite, cot $\beta > \cot \alpha_1 > \cot \alpha_2$, et ξ est positif.

Formes des deux ovales conjuguées. — Une droite ne peut couper l'ensemble des deux ovales conjuguées en plus de quatre points, et, par suite, l'ovale intérieure en plus de deux points, l'ovale intérieure est donc toujours une courbe convexe; elle a une forme ovale au sens généralement attribué à ce mot. Le paramètre de la parabole dépend de la position de S_2 et des valeurs des demi-angles au sommet des deux cônes S_1 et S_2 . Sur la figure le sommet de la parabole se trouve entre S_1 et S_2 : l'ovale extérieure, elle aussi est une courbe convexe. Mais si le sommet de la parabole vient se placer au-dessous de la génératrice $B_1'B_2'$, la projection horizontale de l'intersection des cônes tournera en son sommet B_2 sa concavité vers l'extérieur. Si le sommet de la parabole est en B_1' , B_2 sera un point méplat.

Nous verrons plus loin comment il est possible, d'après l'équation de l'ovale, de se rendre compte de sa forme.

Cas particuliers. — Si S_1 s'éloigne à l'infini dans la direction verticale, l'intersection est symétrique par rapport au plan horizontal mené par S_2 et le sommet S_3 est dans ce plan. L'axe de la parabole passe par S_2 et S_3 . L'ovale intérieure et l'ovale extérieure se confondent en une même circonférence de centre F_1 ; F_2 et F_3 sont conjugués par rapport à cette circonférence double.

Si, S_2 se déplaçant à l'intérieur du cône, S_1 vient sur l'axe de ce cône, l'intersection se compose de deux circonférences horizontales et S_3 s'éloigne à l'infini dans la direction horizontale. La parabole se décompose en deux droites parallèles; l'ovale intérieure et l'ovale extérieure deviennent deux circonférences concentriques ayant pour centres les deux foyers F_1 et F_2 confondus.

Si S_2 est sur le cône S_1 , S_3 coïncide avec S_2 . L'intersection des cônes est une quartique gauche présentant un point double en S_2 : sa projection sur le plan V est une parabole à axe horizontal tangente en S_2 à la droite S_1 S_2 ; sa projection horizontale est un limaçon de Pascal.

Si deux des cônes ont la même ouverture, le sommet du troisième s'éloigne à l'infini: la courbe d'intersection est plane. Sa projection horizontale est une ellipse de foyers F_1 et F_2

si les cônes S_1 et S_2 sont égaux, une hyperbole de foyers F_2 et F_3 si les cônes S_2 et S_3 sont égaux et de foyers F_3 et F_1 si les cônes S_3 et S_1 sont égaux.

2. — Les équations bipolaires et tripolaire de l'ovale.

Soient P et P' les projections sur le plan horizontal et sur le plan V d'un point quelconque de la courbe d'intersection des trois cônes, et π , S', S', S', les projections de ce point et des trois sommets sur un axe vertical pour lequel nous choisissons un sens positif XX'. Soient ν_1 , ν_2 , ν_3 les segments $\pi S'_1$, πS_2 , $\pi S'_3$ et h_1 , h_2 , h_3 les segments $S'_2S'_3$, $S'_3S'_3$, $S'_1S'_2$. La relation de Chasles, appliquée successivement aux points S'_1 , S'_1 , S'_1 , S'_1 , S'_1 , S'_2 , π , S'_3 , S'_3 , S'_3 , nous donne

$$h_1 + h_2 + h_3 = 0 (1)$$

$$v_1 + h_3 - v_2 = 0 (2)$$

$$v_2 + h_1 - v_3 = 0 (3)$$

$$v_3 + h_2 - v_1 = 0 . (4)$$

Multiplions respectivement (2) et (3) par h_1 et par (— h_3) et ajoutons membre à membre; il vient

$$v_1 h_1 - v_2 (h_1 + h_3) + v_3 h_3 = 0$$

ou, en vertu de (1)

$$v_1 h_1 + v_2 h_2 + v_3 h_3 = 0 (5)$$

Soient ρ_1 , ρ_2 , ρ_3 les distances du point Paux trois foyers F_1 , F_2 , F_3 et λ_1 , λ_2 , λ_3 les valeurs au signe près des cotangentes des demiangles au sommet des trois cônes. Convenons de donner à λ_1 , λ_2 , λ_3 les signes respectifs de ν_1 , ν_2 , ν_3 , nous aurons

$$v_1 \equiv \lambda_1 \, \rho_1 \qquad v_2 \equiv \lambda_2 \, \rho_2 \qquad v_3 \equiv \lambda_3 \, \rho_3$$

 ρ_1 , ρ_2 , ρ_3 étant toujours positifs.

$$v_1(v_3 - v_2) + v_2(v_1 - v_3) + v_3(v_2 - v_1)$$
 0

Etant données trois segments de même origine portés sur un même axe, la somme algébrique des produits de chacun d'eux par la différence des deux autres est nulle, puisque, dans cette somme, chaque produit de deux segments intervient deux fois et avec des signes contraires.

¹ En exprimant h_1 , h_2 , h_3 en fonction de v_1 , v_2 , v_3 , on a