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SUR LES OVALES DE DESCARTES

PAR

M. Dufour (Nancy).

C'est au sujet de leurs applications à l'Optique que j'ai été

conduit à m'occuper des ovales de Descartes. La présente note
a pour but d'en exposer certaines propriétés d'une façon assez

simple et intuitive L

I. — L'ovale projection d'une courre gauche.

On sait que l'intersection de deux cônes de révolution à axe
vertical a pour projection horizontale une ovale de Descartes,
et pour projection verticale sur le plan V passant par les axes
des deux cônes une parabole à axe horizontal. Les foyers Fx et F2
de l'ovale sont les projections horizontales des sommets Sx et S2

des deux cônes. En faisant intervenir ainsi la géométrie dans

l'espace, on peut établir assez simplement certaines propriétés
de l'ovale.

§ 1. — Les trois foyers ordinaires.

Soient Ai, Ao, Bi, B_> les points d'intersection des génératrices
situées dans le plan V (fig. 1). Les angles Bi'Ai'B* et B|A>Bl
étant l'un et l'autre égaux à la somme des demi-angles au sommet
des deux cônes Sx et S2, les quatre points A*, A>, Bo, sont
sur une circonférence. Par suite les angles B2A1A2 et B^B'Ao
sont égaux, et on en conclut sans peine que les deux droites

1 Ce travail a été transmis à la Rédaction, par M. Elie Cartan, le 20 avril 1928.

L'Enseignement mathém., 2Se année, 1929. 12



178 M. DUFOUR

A'A'2 et BIB; sont également inclinées sur la verticale. On

peut donc les considérer comme étant deux génératrices d'un
troisième cône de révolution à axe vertical ayant pour sommet
leur point de rencontre S3. L'intersection des deux cônes S-, et S3

a pour projection sur le plan V la même parabole à axe horizontal
que l'intersection des cônes Sx et S2, car les projections de ces

deux courbes d'intersection passent par Ai, Al, B2 et

par quatre points ne passent que deux paraboles (dont les axes
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n'ont pas la même direction). Ainsi les trois cônes Sx, S2, S3 ont
une ligne commune dont la projection horizontale est une ovale
de Descartes. Cette ovale peut donc être définie par deux

quelconques des trois cônes et la projection horizontale F3 de S3 est

son troisième foyer. L'ovale a deux foyers intérieurs F1 et F2 et

un foyer extérieur placé du côté du sommet intérieur F2, pour
lequel la distance au sommet correspondant de la courbe a la

plus petite valeur (F2 A2 < F2 Ax).
La ligne commune aux trois cônes se compose de deux portions

à chacune desquelles correspond une ovale distincte. Nous pou-
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vons donner à ces deux ovales conjuguées les noms d'ovale

intérieure et àè ovale extérieure. Les deux ovales conjuguées, qui
sont données par une même équation rationnelle du quatrième
degré, présentent des caractères très différents en ce qui concerne
leurs normales.

Construction géométrique du troisième foyer. — Supposons une
ovale de Descartes donnée par deux de ses foyers (Fx et F2 par
exemple) et par ses sommets Ax et A2. Sur les lignes de rappel
menées par A± et Fl7 prenons arbitrairement deux points A| et

Slf situées à des distances différentes de Taxe A1A2. Le cône Sx

est défini par sa génératrice S1A1. L'intersection de son autre
génératrice contenue dans le plan de la figure avec la ligne de

rappel menée par A2 nous donne le point A>. Prenons sur la ligne
de rappel menée par F2 le point S2 tel que les droites S2Aj et

S2Aj fassent des angles égaux avec la verticale 1. Ces droites
déterminent les points Efi et Efi', et l'intersection de At Aô avec
BiB> nous donne le sommet S3 qui se projette en F3 sur Taxe de

l'ovale. En faisant varier les positions de Ai et Sl7 qui ont été
prises arbitraitement sur les lignes de rappel, nous serions amenés
à tracer des figures affines, et nous obtiendrions toujours le
même point F3.

On voit facilement comment il conviendrait de modifier la
construction, si le foyer extérieur F3 figurait parmi les données.

Calcul des coordonnées de S3. — Calculons les coordonnées du
point S3 par rapport à un système d'axes rectangulaires 0o 0'{
situés dans le plan V, l'axe des y étant parallèle aux axes des

cônes, l'origine 0' étant le milieu de Sx S2. Soit 2c la distance
F1 F2 des deux foyers intérieurs et 2d la différence des cotes de

Sx et de S2. Les coordonnées de Sx et S2 sont respectivement
(— c, d) et (c, — d). Dans le quadrilatère complet A[ A:B, B,,

i Ce point est à l'intersection de la ligne de rappel F2 S2 avec la droite passant
par >C et par le symétrique de par rapport à cette ligne, de rappel; ce point tombe
à l'intérieur du cone Si. — Nous avons supposé l'ovale donnée par deux foyers et par
ses deux sommets. On pourrait supposer donnés les deux foyers et deux points
quelconques de la courbe: il serait facile alors de déterminer les contours apparents des
deux cônes correspondant à ces foyers., et on serait ramené au cas pour lequel est tracée
la figure 1.
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le faisceau S1(Ai, S2, A2, S3) est un faisceau harmonique. Dans ce

faisceau, les deux génératrices de St ont pour équations

A y — d -j- (x -f- e) 0 et A *=£* y — d — a^ (x -j- c) ==: 0

L'équation de la droite Sx S2 est de la forme A -f p. A' 0.

En exprimant que cette droite passe par S2 nous trouvons

\c — d

Àj c -j- d

L'équation de la droite Sx S3, conjuguée de S1 S2 par rapport
à A et A' est A — p. A' 0, ou, réductions faites,

A| ex + d y — — (X~ c2 — d2)

Grâce au choix fait pour Ox et 0y, il nous suffit pour obtenir
l'équation de S2 S3, de changer les signes de c et d et de remplacer
>i par À2, ce qui donne

Kcx F d - y A® c2 — d2 •

Les coordonnées £ et r, du point S3 sont les racines du système
formé par ces deux équations. On a

h + a2 d2 1
— c -2 ~ — + 2 — — F et y,

x; - x; c x2 __ x-

Ainsi £ est la distance du foyer extérieur de l'ovale au milieu 0

de F1F2. Soient ax et a2 les demi-angles au sommet des deux
cônes S! et S2; supposons a2>a1, alors cota2<cota1 ou

12< Comme (?* — /") est positif, £ a le signe de — c2(l2 + /j)
+ 2d2, c'est-à-dire de

a
d2

2—z- — coU a. — coU a„
c2 1 2

Mais d: c est la cotangente de l'angle aigu ß que fait la droite
S1S2 avec la verticale et, puisque la portion SXS2 de cette droite
est intérieure aux deux cônes Sx et S2, on a ß < ax < a2 et, par
suite, cot ß >cot ax >cot a2, et £ est positif.

Xj_ ^ A
+ 2-
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Formes des deux ovales conjuguées. — Une droite ne peut
couper l'ensemble des deux ovales conjuguées en plus de quatre
points, et, par suite, l'ovale intérieure en plus de deux points,
l'ovale intérieure est donc toujours une courbe convexe; elle

a une forme ovale au sens généralement attribué à ce mot. Le

paramètre de la parabole dépend de la. position de S2 et des

valeurs des demi-angles au sommet des deux cônes Sx et S2. Sur
la figure le sommet de la parabole se trouve entre Sx et S2:

l'ovale extérieure, elle aussi est une courbe convexe. Mais si

le sommet de la parabole vient se placer au-dessous de la
génératrice BiB-2, la projection horizontale de l'intersection des cônes

tournera en son sommet B2 sa concavité vers l'extérieur. Si le

sommet de la parabole est en B', B,> sera un point méplat.
Nous verrons plus loin comment il est possible, d'après

l'équation de l'ovale, de se rendre compte de sa forme.

Cas particuliers. — Si Sx s'éloigne à l'infini dans la direction
verticale, l'intersection est symétrique par rapport au plan
horizontal mené par S2 et le sommet S3 est dans ce plan. L'axe
de la parabole passe par S2 et S3. L'ovale intérieure et l'ovale
extérieure se confondent en une même circonférence de centre
Fx; F2 et F3 sont conjugués par rapport à cette circonférence
double.

Si, S2 se déplaçant à l'intérieur du cône, Sx vient sur l'axe de ce

cône, l'intersection se compose de deux circonférences horizontales

et S3 s'éloigne à l'infini dans la direction horizontale. La
parabole se décompose en deux droites parallèles; l'ovale
intérieure et l'ovale extérieure deviennent deux circonférences
concentriques ayant pour centres les deux foyers F1 et F2
confondus.

Si S2 est sur le cône Sx, S3 coïncide avec S2. L'intersection des
cônes est une quartique gauche présentant un point double en S2:
sa projection sur le plan V est une parabole à axe horizontal
tangente en S2 à la droite Sx S2; sa projection horizontale est un
limaçon de Pascal.

Si deux des cônes ont la même ouverture, le sommet du
troisième s'éloigne à l'infini: la courbe d'intersection est plane.
Sa projection horizontale est une ellipse de foyers Fx et F2
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si les cônes Sx et S2 sont égaux, une hyperbole de foyers F2 et F3
si les cônes S2 et S3 sont égaux et de foyers F3 et F1 si les cônes

S3 et S-, sont égaux.

2. — Les équations bipolaires et tripolaire de Vovale.

Soient P et P' les projections sur le plan horizontal et sur le

plan V d'un point quelconque de la courbe d'intersection des

trois cônes, et tu, S', S,, S3 les projections de ce point et des trois
sommets sur un axe vertical pour lequel nous choisissons un sens

positif XX'. Soient vlf e2, e3 les segments rcSi, tuS_-, 7iS;. et fc2, h3

les segments S-2Sâ, S3 S S^ SX La relation de Chasles, appliquée
successivement aux points S,', S.', St; tu, S,', S'; 7u, S., Sp 7u, S3, S,,

nous donne
hi + /,2 p //3 0 (1)

4'i H- h3 r2 0 (2)

p2 v h1 — c3 0 (3)

(,3 + — 0 (d

Multiplions respectivement (2) et (3) par hx et par (— h3) et

ajoutons membre à membre; il vient

4
1 X 42 Uh + ^3) + 43 ^3 "7: ^

ou, en vertu de (1)
4'i 4

2 ^2 v r3 //3 0 1

(5)

Soient p2, p3les distances du point P aux trois foyers F1? F2, F3

et /l7 /2, /3 les valeurs au signe près des cotangentes des demi-

angles au sommet des trois cônes. Convenons de donner à

)l7 /2, /3 les signes respectifs de c,, c2, c3, nous aurons

s'l L Cl 42 — X ^2 4
3

-T~ A3 C3

,c1} c2, p3 étant toujours positifs.

1 En exprimant hi. h2î l'onction de iq, r2, r8. on a

Î."i 0*3 r2) +• '2Oq — r?>) p C3('2 —"• >'i) •

Etant données trois segments de même origine portés sur un même axe. la somme

algébrique des produits de chacun d'eux par la diltérence des deux autres est nulle,
puisque, dans cette somme, chaque produit de deux segments intervient deux fois et

avec des signes contraires.
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En y remplaçant cq, e2, e3 par ces valeurs, les relations (2),

(3), (4) et (5) deviennent

Xj.Pl ^-2?2 E 0 igp2 A3 p3 "+" ^j — 0 Xg p3 ^lpl ^2 ^ "

VAlFl + /;2 C p2 + VW^ 0

Ce sont les équations bipolaires et tripolaire de l'ovale de

Descartes, rapportées à ses foyers.
Si nous remarquons que \l1\ > | / 2

j > | ^31 1 nous voyons
que l'équation bipolaire étant rapportée aux deux foyers
intérieurs F1 et F2, le foyer extérieur F3 est du côté du foyer intérieur

pour lequel le coefficient du rayon vecteur a la plus petite valeur
absolue et que l'équation bipolaire étant rapportée à un foyer
intérieur et au foyer extérieur, le rayon vecteur correspondant
à ce dernier est affecté du coefficient le plus petit en valeur
absolue.

Sur une équation bipolaire lp -f )/p' — k 0, il est facile de

voir si les deux foyers auxquels elle est rapportée sont ou non de

même nature. Remplaçons-y successivement p et 0' par les

rayons vecteurs (0, 2b) et (2b, 0) qui correspondent aux deux
foyers: si 2b)/ — k et 2ba — k ont le même signe les deux foyers
sont intérieurs; dans le cas contraire, un des deux foyers est

intérieur, l'autre est extérieur.
Nous avons (fig. 1) < 0, h2 >0, h3 < 0 et pour l'ovale

intérieure ).x > 0, )2 < 0 X3 < 0; pour l'ovale extérieure,
> 0 X2 >0 X3 >0.
Si nous désignons par k, / et V des quantités essentiellement

positives, et si nous supposons )/ >/, le tableau suivant nous
indique les formes que prennent les équations des deux ovales
conjuguées suivant les foyers auxquelles elles sont rapportées.

Ovale extérieure

XV — Xp k

XV - À G k

Ce tableau montre également comment on passe d'une équation
de l'ovale à celle de l'ovale conjuguée rapportée aux deux mêmes
foyers.

foyers Ovale intérieure

iq K2 Xg -f XV k

F2F3 Xg — X'p' « k

f 3
I'

jl
X G -f" XV k
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Etant donnée une équation bipolaire, quand on a calculé la
position du troisième foyer, on peut calculer les h.

Connaissant la position de deux foyers, il est aisé de trouver
la position des sommets. Désignons par af (/ étant égal à 1, 2 ou 3)

ah bh b'f les distances respectives du foyer Ff aux sommets
Ai, A2, Bj, B2 des deux ovales conjuguées, et supposons, par
exemple, l'ovale donnée par l'équation bipolaire lxpx — /2<o2 +
h3 — 0. Exprimant que le sommet Ax est sur la courbe nous avons
\ax — /2a2 + Â3 ^ 0. Si nous appelons 2b la distance des deux
foyers FXF2, a2 ax -f- 2b et la relation précédente devient
)•!% — Â2(ai -f 2b) — hz 0, d'où nous pouvons tirer av

D'autre part,
À2 a 2 *** A3ö3 uia-i A3r/3 — /< i

D'où /3(a3 — ay) /2(a-2 — adi relation qui nous fait
connaître /3. On pourrait, connaissant h3 et hx avoir h2 par la
relation hx + h2 — h3 0. Ainsi une des équations bipolaires
d'une ovale étant donnée, nous pouvons trouver les deux autres
équations bipolaires et l'équation tripolaire. Si l'ovale est donnée

par ses trois foyers et son équation tripolaire, nous pouvons
déterminer ses deux sommets et trouver ses équations bipolaires.

D'après le tableau qui précède, l'équation —a'g' k

représente toujours une ovale intérieure rapportée aux foyers
F2 et F3. Les autres formes d'équations bipolaires indiquent
simplement que l'ovale est intérieure ou extérieure. Pour savoir
à quels foyers elle est rapportée, il convient de chercher la position
de .ses sommets et celle du point milieu 0 de l'intervalle qui les

sépare: la disposition des deux foyers connus par rapport à 0,
fait voir si ce sont Fx, F2 ou F3.

3. — L'oca/e courbe anallagmatique.

Si on prend pour pôle un quelconque des trois foyers et pour
axe la droite F1F2F3, l'équation de l'ovale en coordonnées

polaires p et 9 se présente sous la forme o2 + Vp + Q 0,
P étant une fonction linéaire de cos 9 et 0 une constante. La
transformation par rayons vecteurs réciproques autour du pôle
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prj Q conduit à l'équation Q + Po*+^<72 0. L'ovale

est donc une courbe synallagmatique par rapport à chacun de

ses foyers pris pour origine 1.

Dans la figure 1, le quadrilatère inscriptible AiAzB^Bj nous
donne les relations

S1 A[ S1B[ S, B'2 S2A[ S.^BI S2A2 S2B1'

SgA^ S3 A2 — S3 Bj S3 B2

Les deux points de la quartique gauche qui sont sur une même

génératrice du cône Sx correspondent l'un à l'ovale intérieure,
l'autre à l'ovale extérieure et sont d'un même côté de Sx; pour
le cône S2 les deux points correspondent l'un à l'ovale intérieure,
l'autre à l'ovale extérieure et sont de part et d'autre de S2;

pour le cône S3, les deux points correspondent tous deux soit à

l'ovale intérieure, soit à l'ovale extérieure et sont d'un même côté
de S3. Chacune des ovales conjuguées est à elle-même son inverse

par rapport à F3, la puissance d'inversion m\ étant positive
(cercle d'inversion réel passant par les points de contact des

tangentes menées du foyer extérieur aux deux branches de la
courbe. On a ml '

a%..az — bz.bl\ a3, b5 et bl conservant les

significations indiquées plus haut). Les tangentes menées du
foyer extérieur à deux ovales conjuguées sont égales.

Les deux ovales conjuguées sont inverses l'une de l'autre par
rapport à F1 et F2: la puissance d'inversion m\ relative à Fx est
positive (cercle d'inversion réel passant entre les deux courbes) ;

la puissance d'inversion — m] relative à F2 étant négative (cercle
d'inversion imaginaire).

On a
m" — ai l)l a h{ cl hC — (t.,b2 — ((.>!>.>

On trouverait aussi ces valeurs de ml, nû, ml en calculant le
terme constant Q de l'équation monopolaire qui correspond à
chacun des trois foyers.

i L'ovale étant symétrique par rapport à l'axe F1F2F3 (puisque le plan V est un
plan de symétrie pour les trois cônes), et la symétrie par rapport à un axe pouvant être
considérée comme une inversion dont le centre s'est éloigné à l'infini dans une direction
perpendiculaire à l'axe de symétrie, l'ovale possède quatre origines d'anallagmatisme
comme toute quartique bicircula ire.
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Partons du sommet Ax: l'inversion ml nous mène en B1? puis
l'inversion — m\ nous mène en A2, et enfin l'inversion ml nous
ramène en Ax. Donc ml. m], ml =1.

Le foyer F3 a même puissance par rapport aux deux cercles de

diamètre Ax A2 et BtB^ il est donc sur leur axe radical. Puisque,
connaissant l'équation bipolaire — À262 + hz 0 d'une
ovale, on en déduit facilement l'équation de l'ovale conjuguée
et la position des sommets de cette dernière, nous obtenons ainsi
une seconde construction du foyer extérieur F3. On voit sans
peine que F1 et F2 pourraient aussi se trouver par une construction
d'axe radical: F1 est sur l'axe radical des deux cercles décrits
sur A1B1 et A2B2 comme diamètres, et la corde commune aux
deux cercles décrits sur AXB2 et A2BX comme diamètres passe
par F2.

Cercle tangent à Vovale et passant par deux points donnés dont

un de ses foyers. — L'inversion anallagmatique autour du foyer
par lequel doit passer le cercle à construire transforme ce cercle

en une droite tangente à l'ovale et passant par le point inverse
de l'autre point donné. Le point inverse de son point de contact
avec l'ovale est le point où le cercle à construire touche l'ovale.
En particulier, le cercle passant par F1 et F2 et tangent à l'ovale
se déduit par inversion autour du foyer Fx, par exemple, de

la tangente à l'ovale conjuguée qui passe par l'inverse de F2.

4. — Sécantes passant par un foyer.

D'une propriété bien connue de la transformation par rayons
vecteurs réciproques, il résulte immédiatement que: 1° toute
sécante à l'ovale menée par Fx est bissectrice des directions des

tangentes aux deux points situés d'un même côté de l'axe où
elle coupe les deux ovales conjuguées; 2° toute sécante menée

par F2 est bissectrice des directions des tangentes aux deux

points situés de part et d'autre de l'axe où elle coupe ces deux
ovales; 3° toute sécante menée par F3 est bissectrice des directions
des tangentes aux deux points où elle coupe chacune des ovales
intérieure et extérieure.
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Si entre l'équation de l'ovale en coordonnées polaires rapportée
à un de ses foyers et l'équation d'une droite quelconque de son

plan
p [p cos 0 -f (j sin 6) r

on élimine 9, on obtient une équation du quatrième degré en 6

dont les quatre racines sont les distances des foyers aux points
d'intersection de la droite et de la courbe. Dans cette équation
le quotient des coefficients de p3 et de p4 est une constante: donc
la somme des quatre rayons vecteurs menés d'un foyer aux points
d'intersection de la courbe avec une droite quelconque est
constante. Nous pouvons le voir par des considérations géométriques

simples dans le cas où la sécante passe par le foyer.
Par l'axe de l'un des cônes, par exemple, menons un plan

vertical quelconque V'. L'intersection de V' avec le cône S2 est
une hyperbole à axe réel vertical. Le centre S > de cette hyperbole
est toujours dans le plan horizontal qui passe par S2, et l'angle de

ses asymptotes est égal à l'angle au sommet du cône S2 (fig. 2).

S.

L'intersection de V' avec le cône Sx se compose de deux génératrices

de ce cône. Soient Ql7 Q2, R1? R2 les points d'intersection
de ces deux génératrices avec l'hyperbole, et SâQ, SoR les
diamètres conjugués des cordes Q1 Q2 et R3 R2. Ces diamètres sont
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comme les cordes correspondantes également inclinés sur la
verticale. Nous avons

SiQi + SxQ2 2S,Q et spa, + 2S1R

Faisons tourner le plan V' autour de l'axe du cône Sx: l'angle
des deux génératrices passant par S1 ne change pas, Si se déplace
dans V' le long d'une droite horizontale et vient en Si. L'angle
des asymptotes ne change pas et par suite le système des deux
diamètres conjugués subit une translation horizontale: lea

déplacements de Q et R sur les génératrices de Sx sont égaux et
de sens contraire et la somme SXQ + SXR reste constante, quelle
que soit l'orientation de V'. Projetons sur la trace horizontale
de V': nous voyons que la somme des distances d'un foyer aux
points d'intersection de la courbe avec une sécante quelconque
passant par ce foyer est constante.

Si nous prenons comme sécante l'axe FjFg, nous voyons de

plus que la constante est la même pour les foyers F1 et F2.

5. — Le foyer singulier.

Les trois points Fx, F2, F3. auxquels leur propriété optique
a fait donner le nom de foyers, sont aussi des foyers répondant
à la définition de Plücker: le calcul prouve que ce sont les points
d'intersection de tangentes menées à l'ovale par les points
cycliques du plan.

L'ovale possède aussi un foyer singulier: elle passe par les

points cycliques du plan et a des asymptotes qui la touchent en
ces points.

Si nous supposons que S2 se déplace sur la verticale F2S2
(fig. 1), c'est-à-dire si nous faisons varier A3 en laissant fixes
et /2, nous obtenons une famille d'ovales définies par la relation

\pi + A2^2 — — A3, °h h3 est un paramètre variable. Dans

l'équation en coordonnées cartésiennes correspondante, les termes
du quatrième et du troisième degré sont indépendants de ft3, et,

par suite, toutes ces ovales ont les mêmes asymptotes 1. Il nous

i L'équation cartésienne de l'ovale de Descartes ne diffère que par une constante
de celle du limaçon qui fait partie de la famille. L'ovale est le lieu des points d'égale
puissance par rapport au limaçon.
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suffira donc d'étudier ces asymptotes dans le cas particulier
où S2 est sur le cône S1? où l'ovale devient un limaçon de Pascal.

En regardant cette courbe comme une conchoïde de cercle, et en

prenant comme pôle son point double et comme axe polaire son

axe de symétrie, on écrit immédiatement son équation en

coordonnées polaires

p 2r cos 6 -\- l 011 p2 — 2rp cos 64-/0 0

Passant aux coordonnées cartésiennes rectangulaires, le pôle
étant pris pour origine et l'axe polaire pour axe des x, on a

(.x2 4 y2 — D'x)2 l2{%2 + y2) •

Les points cycliques sont points doubles: les tangentes aux
points cycliques y rencontrent la courbe en trois points confondus.
Soit y ix + S une de ces asymptotes; l'équation aux abscisses
des points de rencontre de cette droite avec la courbe doit avoir
trois racines infinies. En portant la valeur y ix + § dans

l'équation de la courbe, et en exprimant que
le coefficient de x2 est nul, nous obtenons la Si

relation (â + ri)2 — 0. Les points cycliques
sont des points de rebroussement de l'ovale,
et les asymptotes se coupent en un point
réel (x — r, y 0) au centre du cercle de

base du limaçon. Ce point est le foyer
singulier commun aux ovales de la famille
Ai°i ^2p2 — ^31-

Calculons la valeur du rayon r en fonction
de la distance 2c des deux foyers et des

coefficients ^ et À2. Nous avons (fig. 3), en
appelant G l'extrémité du diamètre du cercle
de base du limaçon F2C ~ 2r. D'après la définition de la
conchoïde, ce cercle passe à égale distance de B et de A, points
du limaçon situés sur son axe. On a 2 F2C F2A + F2B,

1 Si nous supposons l 2r, nous n'ayons plus affaire à une ovale de Descartes,
mais à une cardioïde. Le centre du cercle de base de la cardioïde est un foyer
singulier.
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D'autre part,

A0A' — a2. F2 A à1 (1a — F2A) d'où F2A

H0 B a2 F2 B MK2B — \c) d'où F2B

4 À1 c

Par suite

F„C F, A + F» B 1 1 \ 2 A" c

L + À2 L ~~ L/ À"

Désignons par Fs le foyer singulier; ses distances aux trois
foyers ordinaires sont1

F,. F,
2 \"y C

FF,
2X"

F F.
cl2 I

a" — À:, '
Xj — À;,

Fs est extérieur à l'intervalle F, F2 et placé du côté de Fv

II. — Normale a l'ovale.

L'ovale étant donnée par l'équation \p + )/p' h rapportée
à deux foyers F et F', nous prenons sur la courbe un point I,

Fig. 5.

nous portons sur les rayons vecteurs FI et F'I des segments
IB a et IB' À', et nous complétons le parallélogramme
BIB'I' (fig. 4 et 5): sa diagonale II' est la normale à l'ovale.

i En prenant Fs pour origine, l'équation cartésienne de l'ovale prend une forme
où FgFi, FsF2 et FSF3 interviennent de façon symétrique, se prêtant de façon commode
à l'étude de la courbe.
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La normale rencontre l'axe FF' en un point C situé entre F etF'
si / et /'sont de même signe (fig. 4) et en dehors de l'intervalle
FF' si a et sont de signe contraire (fig. 5). Le tableau des

équations bipolaires montre que pour l'ovale intérieure, la
normale passe entre F, et F2 et que pour l'ovale extérieure, elle

rencontre l'axe en des points extérieurs à l'intervalle FjFa-
Soient i,ïety les angles que fait la normale avec les rayons

vecteurs et avec l'axe FF'. Les deux triangles GFI et CF'I nous
donnent

CF sin | C V sin if
o sin y p' sin y

D'où
CF sin i p

CF' sin i' p/

Dans le triangle IBI'
sin i | X' |

sin i' | X |

Donc

c»f=m p

CF7 j X |

'
p'

'

Le rapport des segments déterminés sur FF' par la normale à

Vovale est égal au produit du rapport des rayons vecteurs adjacents

par un facteur constant.

Réciproquement, si la normale à une courbe détermine sur
la droite passant par deux points fixes Y et Y' deux segments dont
le rapport est égal au produit du rapport des deux rayons vecteurs

adjacents par un facteur constant, la courbe est une ovale de

Descartes. En effet, si
FC

_
| V | _p

fc — ]T[ ' 7' '

nous pouvons construire sur les directions des rayons vecteurs
un parallélogramme de côtés égaux à X et À'.

Si nous connaissons le point d'intersection C d'une normale
avec l'axe, nous connaîtrons le rapport p : p' et, si nous écrivons
l'équation de la courbe sous la forme

h
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nous pouvons déterminer p' et par suite p. Alors le point I est

connu et CI est la normale cherchée.
Pour trouver l'angle y de la normale avec l'axe, projetons le

contour IPB sur l'axe focal et sur une droite qui lui soit
perpendiculaire. Désignant par <p et 9' les angles des rayons vecteurs
avec l'axe, nous obtenons

II' cos Y — à cos cp — h cos cp' 0 IF sin y — a sin <p — F sin <p' — 0

D'où
A sin cd 4- )/ sin cd'

t g Y t
Â COS CD -F Â sill CD

III. Points ou l'ovale présente un maximum ou un minimum
DE COURBURE.

1. — Sommets de Vovale.

Par raison de symétrie, les sommets situés sur l'axe correspondent

à un maximum ou à un minimum de courbure.

1. Construction du centre de courbure relatif à un sommet. —
Si le point I (fig. 4 et 5) se rapproche indéfiniment du sommet A,
le point C, intersection de la normale en I avec FF^, tend vers
une position limite C0 qui est le centre de courbure en A, puisque
par raison de symétrie, ce centre de courbure doit se trouver
sur FF' et on a

Col 1ZJ r:«A
C0 1' | À | U0 A

Le point G0 divisant FF' dans un rapport donné se détermine

par une construction bien connue et cette construction est applicable

à l'ellipse (X — À') et à l'hyperbole (X — X').

2. Sommets de Vovale intérieure. — Quand le point I se déplace
sur une ovale intérieure à partir du sommet A1? voisin du foyer
Fx, px augmente et l'équation de la courbe ).1p1 + X2 62 — h3

montre que p2 diminue. Alors px : p2 augmente, ainsi que : CF2
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et le point C se rapproche de F2 et de A2. La courbure passe donc

par un maximum en Av On verrait de même qu'elle passe par un
maximum en A21.

3. Sommets de Vovale extérieure. — Considérons l'ovale
extérieure comme la transformée de l'ovale intérieure conjuguée en

prenant F-l pour centre d'inversion. Le cercle osculateur en A±

devient par inversion le cercle osculateur en Bx et comme le

cercle osculateur en A1 est intérieur à l'ovale intérieure, le cercle
osculateur en Bj est extérieur à l'ovale extérieure. D'autre part,
le foyer F3 est intérieur au cercle osculateur en A1? puisque les

normales à l'ovale intérieure rencontrent l'axe entre les deux
foyers: Fx est donc intérieur au cercle osculateur en Bx: en ce

sommet la courbe tourne sa concavité vers F1 et présente un
minimum de courbure.

En ce qui concerne le sommet B2, il faut distinguer plusieurs
cas:

a) Si le foyer F1 est à l'intérieur du cercle osculateur en A2,
il est aussi à l'intérieur du cercle osculateur en B2 et, ce cercle
étant extérieur à la courbe, l'ovale extérieure tourne en B2 sa
concavité vers Fx et présente un minimum de courbure.

ß) Si le cercle osculateur en A2 passe par Fx, il se transforme en
une droite, et l'ovale extérieure présente au sommet B2 un point
méplat.

y) Enfin, si le foyer F1 est extérieur au cercle osculateur en
A2, il est aussi extérieur au cercle osculateur en B2 et, ce cercle
étant extérieur à la courbe, l'ovale extérieure tourne en B2 sa
convexité vers Fx et présente un maximum de courbure 2.

1 On peut obtenir le même résultat d'une façon plus classique, mais qui exige quelques
calculs. Soit un cercle de rayon R tangent au sommet de l'ovale. Prenons pour axes
de coordonnées l'axe et la tangente au sommet. Les coordonnées d'un point P du cercle
sont x R(1 cos y) et y R sin f. Dans x et y remplaçons cos y et sin 9* P&r leurs
développements en série en fonction de <p et négligeons les puissances supérieures à
la quatrième. Calculons F^P et F2P. Portant leurs valeurs dans le premier membre
de l'équation de l'ovale, nous obtenons une expression de la forme p?2 + q<pé. Ecrivons
que le coefficient de 9>2 est nul: l'équation p 0 nous fait connaître le rayon R0 du
cercle osculateur. Le signe du coefficient de f* quand on y remplace R par R0, permet
de savoir si la courbure au sommet envisagé est maxima ou minima.

2 Dans ce dernier cas, le foyer Fi est intérieur au cercle osculateur en Ax et extérieur
au cercle osculateur en A2. Il y a donc sur chacune des moitiés de l'ovale intérieure
entre Ax et A2 un point tel que le cercle osculateur en ce point passe par Fx, et le cercle
-osculateur au point correspondant de l'ovale extérieure est une droite: ce point homologue

est un point d'inflexion.
Il y a entre les valeurs de plt p2, i1} i2 qui correspondent aux points d'inflexion une

L'Enseignement mathém., 28e année; 1929. 13
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4. Condition pour que Vovale extérieure soit une courbe convexe.

— Nous avons vu plus haut comment la forme d'une équation
bipolaire nous permet de reconnaître s'il s'agit d'une ovale
intérieure ou d'une ovale extérieure. Cherchons la condition pour
qu'une ovale extérieure soit une courbe convexe. Des considérations

d'optique vont nous guider.
La relation À sini |à'| sini' nous montre que, si nous envisageons

l'ovale comme la méridienne d'un dioptre pour lequel le

premier et le second milieu ont des indices respectivement égaux
à 1 et X' et si nous supposons un point lumineux placé en F dans
le premier milieu, les rayons réfractés forment un faisceau homo-

centrique de centre FC Supposons l'ovale rapportée à ses foyers
intérieurs et prenons F2 comme point-objet. Si l'ovale possède

en B2 un point méplat, les rayons lumineux venant de F2 sont
réfractés au voisinage de B2 comme ils le seraient sous l'incidence
normale par un dioptre plan, et on a A2F1B1 ^FaBg ou

l2bl IxK. Si la courbe tourne en B2 sa concavité vers F2,

l'image F1 se rapproche de B2, et on a l2b2< l1b1 : c'est la
condition pour que l'ovale extérieure soit une courbe convexe.

2. — Points situés en d,ehors de Vaxe et présentant un maximum
ou un minimum de courbure.

Soit M un des points de contact de la circonférence menée

par F1 et F2 et bitangente à l'ovale. En ce point M, l'angle
FjMFa, formé par les rayons vecteurs, passe par un maximum.
Il est égal à (ix + i2) pour l'ovale intérieure (fig. 6) et à (i± — i2)

pour l'ovale extérieure. Nous avons donc, en M, d(ix ± i2) 0.

D'autre part, de la relation

lx sin ix X2 sin /2 nous tirons kx cos ix dix X2 cos i2 di2

relation simple qu'on trouve aisément par des considérations d'optique. Dans le plan
de la figure, les rayons lumineux émanés de F2 sont réfractés en ces points par un
dioptre ayant l'ovale pour méridienne comme ils le seraient par un dioptre plan oscula-
teur. La relation qui détermine la position de la focale tangentielle est

>1 COS2 il >2 COS2 i2

Pl ~ P2
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Par suite d{ix ± i2) 0 équivaut à

195

cos /'- \1 ± 1 1)dh 0
À2COSf2/

Le facteur entre parenthèses ne pouvant s'annuler, dix 0

et di2 — 0; alors îx et i2 passent en M par un maximum. Soit.

MJ la normale.

Prenons sur l'ovale un point M' infiniment voisin de M;
la droite F1M/ prolongée rencontre la circonférence au point P.
Les angles inscrits FXPJ et FXMJ sont égaux. La normale M'?
faisant avec FXM' un angle égal à ix au second ordre près, puisque

est un maximum, est parallèle à PJ et, puisque M'P est du
second ordre, cette normale passe, au second ordre près, par le

point J. J est par conséquent un point de rebroussement de la
développée et en M la courbure de l'ovale passe par un minimum
(pour l'ovale intérieure) par un maximum (pour l'ovale
extérieure). Nous voyons donc que le cercle tangent en M ayant un
rayon égal à la moitié du rayon de courbure en ce point passe

par les deux foyers intérieurs. Entre les angles it et i2l les rayons
vecteurs px et p2 et le rayon de courbure R nous avons en M
les relations

2R
cos i1 cos /2

En tout point de l'ovale y <px — <p2 + H d'où

dy dv1 — di1 dy2 + di2

En M on a (iy d(p2.
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IV. — Applications a l'optique.

1. — Ovales stigmatiques par rapport à deux points donnés.

On sait depuis Descartes que la méridienne d'un dioptre
stigmatique pour deux points donnés P et P', situés dans deux
milieux optiques d'indices respectifs 1 et n, est une ovale de

Descartes dont ces points sont deux foyers 1.

On obtient l'équation de cette ovale en appliquant la loi
du tautochronisme, c'est-à-dire en écrivant que le temps mis par
la lumière pour aller dans le premier milieu du point P à un point I
de l'ovale et du point I au point P' dans le second milieu est

une constante. Les rayons vecteurs p et p' étant positifs, on
affectera p du signe + ou du signe — suivant que P sera un point
lumineux réel ou virtuel ; p

' sera affecté du signe + ou du signe —
suivant que P7 sera une image réelle ou virtuelle. Désignant par
p0 et p'o les distances de P et P' au point S où la méridienne
rencontre l'axe PP', nous écrivons la loi du tautochronisme sous
la forme

±P± n? ± ?0 ± n?f0 •

Les deux points P et P' étant donnés, il y a pour toute position
de S une ovale stigmatique, qui suivant la distribution des points
P, P' et S peut être une ovale intérieure ou une ovale extérieure.
D'après ce qui a été dit plus haut (I § 2 et III, § 1), nous

pourrons reconnaître sa nature, savoir à quels foyers elle est

rapportée et dire si au point S elle présente un maximum ou un
minimum de courbure. Des considérations très simples vont
nous fournir directement ce dernier renseignement dans le cas où
P et P' sont conjugués par rapport à un dioptre sphérique de

sommet S.

Supposons que le dioptre sphérique tourne sa convexité du

i Un système optique est stigmatique pour deux points P et P' si tous les rayons
incidents venant de P ont pour conjugués des rayons passant par PL Le système est
aplanétique quand il est stigmatique pour les points infiniment voisins de P et P',
situés au voisinage de son axe dans deux plans perpendiculaires à l'axe.
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côté d'où vient la lumière et que le second milieu est plus réfringent

que le premier (n > 1). Nous avons à distinguer un certain
nombre de cas.

1. P réel infiniment éloigné; P' coïncide avec le foyer-image.
L'ovale se réduit à une ellipse, présentant en S un maximum de

courbure.
2. P réel plus éloigné de S que le foyer objet; P' est réel

(fig. 7). La condition du tautochronisme donne p + no' k.

Cf3) (Fi)

P H 0 P'

Fig. 7.

L'ovale, indiquée schématiquement en pointillé, est une ovale

intérieure rapportée aux foyers F3 et F1 (voir le tableau, I § 2) et
P' ne peut correspondre à F3 puisque l'on a n > 1 1. Donc P

correspond à F3 et P' à Fx. Il y a un maximum de courbure en S.

3. P réel placé au foyer-objet; P' est à l'infini. L'ovale devient
une hyperbole. Maximum de courbure en S.

4. P réel et P' virtuel (fig. 8), Nous avons

0 — no' — on — no' < 0
1 1 1 u 1 o

jjg ih) IT psJ o "

Fig. 8.

puisque pQ > po et n >1. Il s'agit d'une ovale extérieure. Comme
en S elle tourne sa convexité vers les foyers P et P', P' correspond
à F1 et P à F2. Il y a un maximum de courbure en S.

5. P et P' coïncident avec S. L'ovale se réduit à un point.
6. P virtuel placé entre le sommet S et le centre de courbure O

du dioptre sphérique; P' est réel entre P et O (fig. 9). Nous avons

« s -f no' — pn -f no' > 0
k 1 u ' ' o

fihKh)

S\^PP' 0

Fig. 9.

1 P7 ne peut jamais correspondre à F3, ni P à Fx
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puisque p'0 > p0 et n > 1. C'est l'équation d'une ovale extérieure.
La courbe tournant en S sa concavité vers P et P', P' correspond
à Fx et P à F2. Il y a un minimum de courbure en S.

7. P et P' coïncident avec 0. L'ovale se réduit au cercle méridien

du dioptre puisque les foyers F1 et F2 viennent en coïncidence.

8. P virtuel au-delà de 0 et en deçà du point stigmatique objet
du dioptre (fig. 10).

Si P est virtuel et placé au-delà de 0, P' est réel et placé entre
0 et P. Nous avons

- p + flpr — p0 + // •

Quand P se déplace vers la droite à partir de 0, —• p0 + np'Q part
de la valeur positive (n — 1) SO et décroît pour s'annuler quand
P atteint le point stigmatique objet. Nous reconnaissons l'équation

d'une ovale extérieure. Il y a un minimum de courbure en S.

9. P virtuel placé au point stigmatique objet, P' au point
stigmatique image. Nous avons — p -j- no' — 0. L'ovale se

réduit au cercle méridien du dioptre sphérique.
10. P virtuel placé au-delà du point stigmatique objet; P' est

entre 0 et P (fig. 11). Nous avons

Fig. 10.

— p H- " p' — fo + n P' < 0

Fig. 11.

C'est l'équation d'une ovale intérieure rapportée aux foyers

F2 et F3: F2 est en P', F3 en P. Il y a un maximum de courbure

en S.
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On peut faire 1a. même discussion si, n étant toujours plus

grand que 1, le dioptre tourne sa concavité du côté d'où vient la
lumière. Enfin, pour passer aux cas où on aurait n < 1, il suffirait
d'appliquer le principe du retour inverse des rayons lumineux.

Ce mode de raisonnement s'applique aussi aux miroirs stigma-
tiques pour deux points donnés. Dans le cas de la réflexion

{n — 1), l'ovale se réduit à une conique, dont la courbure aux
sommets sur l'axe est toujours un maximum.

Pour les rayons centraux, l'action du dioptre sphérique est
la même que celle du dioptre stigmatique ayant pour méridienne
l'ovale dont le cercle osculateur en S coïncide avec le cercle 0.

Si cette ovale présente en S un maximum de courbure (fig. 12),
l'effet optique réalisé en chaque point I par la substitution du
dioptre stigmatique au dioptre sphérique est celui que produirait
en I l'adjonction au dioptre sphérique d'un prisme d'angle très

petit à arête tournée vers l'axe. Ce prisme déviant les rayons vers
sa base, nous en concluons que les rayons marginaux réfractés

par le dioptre sphérique rencontrent l'axe en un point P" plus
rapproché du sommet S que le point P' où se croisent les rayons
centraux. L'aberration est dite sous-corrigée. Si l'ovale présente
en S un minimum de courbure (fig. 13), l'effet optique réalisé

2. — Aberration du dioptre sphérique.

P"P' P'P"

Fig. 12. Fig. 13.

par la substitution du dioptre sphérique au dioptre stigmatique
est celui que produirait en I l'adjonction au dioptre stigmatique
d'un petit prisme à arête tournée vers l'axe: nous en concluons
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que les rayons marginaux réfractés par le dioptre sphérique
rencontrent l'axe en un point P" plus éloigné de S que P'.
L'aberration est dite surcorrigée 1.

D'après ce qui a été dit au paragraphe précédent, l'aberration
du dioptre sphérique convexe et convergent est surcorrigée
quand le point lumineux objet P se trouve entre le sommet du
dioptre et son centre de courbure; quand Pest extérieur à cet
intervalle, l'aberration est souscorrigée. L'aberration du miroir
sphérique garde toujours le même sens, quelle que soit la position
du point-objet sur l'axe: elle est toujours souscorrigée pour le
miroir sphérique concave et surcorrigée pour le miroir sphérique
convexe.

3. — Surface de Vonde réfractée de chemin optique nul dans le cas
d'un dioptre sphérique et d'une onde incidente sphérique.

L'ovale de Descartes se rencontre encore quand on cherche la
surface de l'onde réfractée de chemin optique nul donnée par
un dioptre sphérique, le point-objet A étant à distance finie 2.

i On peut, en précisant ces indications, calculer la valeur de l'aberration. Prenons
sur l'ovale et sur son cercle osculateur au sommet deux points voisins situés à une
même distance infiniment petite h de l'axe. Menons en ces points les normales à l'ovale
et au cercle. Les angles 7 et 7o qu'elles font respectivement avec l'axe sont des infiniment
petits; leur différence j 7—7o I est l'angle du petit prisme additionnel. Pour
avoir 7, nous utilisons l'expression de tg 7 donnée dans la deuxième partie de cette
note, en développant les sinus et cosinus en série jusqu'au troisième ordre inclusivement
et tenant compte de la relation qui existe .entre les distances de deux points conjugués
au sommet d'un dioptre sphérique d'indice n et de rayon R. Nous trouvons

n + 1 •„V~~2n2~ U>*(Ai étant l'angle du rayon incident avec la droite joignant le point d'incidence au point
stigmatique objet du dioptre sphérique. La déviation imprimée par ce primse d'angle <1*

au rayon réfracté est
n.2 — 1

S(n — 1 i2

Le déplacement correspondant du point d'intersection de ce rayon avec l'axe est
<J.IP': sin <?'. Comme ^ est du troisième ordre infinitésimal et f du premier ordre,
nous pouvons remplacer sin f par la partie principale de f, c'est-à-dire par h: SP',
et IP' par SP' qui lui est égal à un infiniment petit du second ordre près. Donc

J.ni -ülni.Üil.i,*."h 2n2 h

2 Si le point-objet est à l'infini, la surface d'onde réfractée de chemin nul est rejetée
à l'infini.
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Soient 0 le centre de courbure du dioptre, AI un rayon incident

quelconque, 01 la normale (fig. 14 et 15). La circonférence menée

Fig. 14.

par A et I et tangente à 01 coupe la droite OA en un point fixe B et
OB.OA Ol2. Soient P le second point où le rayon réfracté IP

coupe la circonférence AIB, et C l'intersection de OA et de IP.
Le triangle AIP nous donne

PI sin V 1

Al sin i n

Les temps employés par la lumière pour aller de A à I dans
le premier milieu et de P à I dans le second milieu sont égaux.
Le lieu du point P est la méridienne de la surface d'onde réfractée
de chemin optique nul. Nous avons, dans les triangles PAC et
PBC,

PA sin y PB sin y— — 1

et —
1

CA sin APC CB sin BPC
'

D'où
CB sin BPC PB CB sin BAI PB
CA sin APC'PA CA sin ABI 'PA



M. DUFOUR

Le triangle AIB donne

sin BAI BI
sin A BI AI

Donc

GB _ BI PB SB PB
CÂ ~~ Ä1 ' PÄ ~~ SA

* PÄ ou
GB

GA
R — R2 : a PB

a PÄ

D'après ce que nous avons vu plus haut (II, § 1), PC est
normale à une ovale de Descartes dont deux foyers sont A et B.

SA
Un des sommets est à une distance du sommet du dioptre.

La connaissance de la nature de cette ovale donnerait directement
le sens de l'aberration pour le point A, mais le procédé artificiel
indiqué au paragraphe précédent est plus simple.

Nous signalerons encore ici, bien que l'ovale de Descartes

n'y intervienne pas, une application catoptrique de la cardioïde.
La cardioïde peut être considérée comme engendrée par un

point d'un cercle qui roule extérieurement sur un cercle égal.

4. — Condensateur cardioïde.

X

F ig. 16.

Soient 0 le centre du cercle de base, 0' une position quelconque
du centre du cercle mobile, I le point correspondant de la
cardioïde et S son point de rebroussement (fig. 16). Le trapèze
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SIO'O est isocèle. La droite IA normale à la cardioïde est bissectrice

de l'angle SIO'; O'B est parallèle à SO; 00' est bissectrice de

l'angle formé par les droites O'I et BO' prolongée. Traçons le
•cercle ayant 0 pour centre et passant par 0'.

Un rayon lumineux XO' parallèle à l'axe se réfléchit sur le
cercle suivant O'I, puis sur la cardioïde suivant IS. L'association
du miroir sphérique convexe, ayant pour centre le foyer singulier
et de rayon égal au diamètre du cercle de base, à un miroir
concave de révolution, ayant pour méridienne la cardioïde
transforme un faisceau de rayons parallèles à l'axe en un faisceau

homocentrique de sommet S. Ce système optique est stigmatique
pour le point S et le point infiniment éloigné de son axe et, de plus,
il est aplanétique, car le rayon incident et le rayon deux fois
réfléchi se coupant sur la circonférence de cercle de centre S

et de rayon SB 00', la condition d'aplanétisme (condition des

sinus) se trouve satisfaite. Ce système catoptrique est réalisé dans
le condensateur cardioïde de Zeiss, qui s'emploie avec le microscope

pour l'éclairage à fond noir et l'ultramicroscopie. Comme
on n'utilise qu'une faible portion de la cardioïde au voisinage du
point I, on la remplace par une portion de son cercle osculateur
en I. Le rayon de courbure de ce cercle se détermine facilement.
Le miroir concave employé est alors une zone empruntée à la
surface d'un miroir torique.
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