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SUR LES OVALES DE DESCARTES

PAR

M. Durour (Nancy).

G’est au sujet de leurs applications a I’'Optique que j'ai été
conduit & m’occuper des ovales de Descartes. La présente note

a pour but d’en exposer certaines propriétés d’une facon assez
simple et intuitive 1.

. — 1OVALE PROJECTION D'UNE COURBE GAUCHE.

On sait que I'intersection de deux cones de révolution & axe
vertical a pour projection horizontale une ovale de Descartes,
et pour projection verticale sur le plan V passant par les axes
des deux coOnes une parabole a axe horizontal. Les foyers F; et F,
de I'ovale sont les projections horizontales des sommets S, et S,
des deux cones. En faisant intervenir ainsi la géométrie dans
I'espace, on peut établir assez simplement certaines propriétés
de 'ovale.

§ 1. — Les trois foyers ordinatres.

Soient A,, A;, B/, B, les points d’intersection des génératrices
situées dans le plan V (fig. 1). Les angles B;A;B, et B;A,B.
étant I'un et 'autre égaux a la somme des demi-angles au sommet
des deux cones S, et S,, les quatre points A;, A), B,, B; sont
sur une circonférence. Par suite les angles B, A, A, et B,B" A,
sont égaux, et on en conclut sans peine que les deux droites

1 Ce travail a €té transmis a la Rédaction, par M. Elie Cartan, le 20 avril 1928.

[’Enseignement mathém., 28¢ année, 1929. 12




178 M. DUFOUR

A"A; et BB, sont également inclinées sur la verticale. On
peut donc les considérer comme étant deux génératrices d’un
troisitme cone de révolution a axe vertical ayant pour sommet
leur point de rencontre S;. L’intersection des deux cones S; et Sy
a pour projection sur le plan V la méme parabole a axe horizontal
que l'intersection des cones S; et S,, car les projections de ces
deux courbes d’intersection passent par A;, A,, B;, B, et
par quatre points ne passent que deux paraboles (dont les axes
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Irig. 1.

n’ont pas la méme direction). Ainsi les trois cones S;, Sy, S; ont
une ligne commune dont la projection horizontale est une ovale
de Descartes. Cette ovale peut donc étre définie par deux quel-
conques des trois cones et la projection horizontale IF5 de Sy est
son troisieme foyer. L’ovale a deux foyers intérieurs I, et I, et
un foyer extérieur placé du coté du sommet intérieur Iy, pour
lequel la distance au sommet correspondant de la courbe a la
plus petite valeur (F,A, < IF; Ay).

La ligne commune aux trois cones se compose de deux portions
a chacune desquelles correspond une ovale distincte. Nous pou-
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vons donner & ces deux ovales conjuguées les noms dovale
intérieure et d’ovale extérieure. Les deux ovales conjuguées, qui
sont données par une méme équation rationnelle du quatriéme
degré, présentent des caractéres tres différents en ce qui concerne
leurs normales.

Construction géométrique du troisiéme foyer. — Supposons une
ovale de Descartes donnée par deux de ses fovers (F; et I, par
exemple) et par ses sommets A; et A,. Sur les lignes de rappel
menées par A; et F,, prenons arbitrairement deux points A, et
Sy, situées & des distances différentes de 'axe A; A,. Le cone Sy
est deéfini par sa génératrice S;A,;. L’intersection de son autre
génératrice contenue dans le plan de la figure avec la ligne de
rappel menée par A, nous donne le point A.. Prenons sur la ligne
de rappel menée par F, le point S, tel que les droites S, A, et
S, A, fassent des angles égaux avee la verticale '. Ces droites
déterminent les points B. et B;, et I'intersection de A; A, avec
B.B. nous donne le sommet S; qui se projette en Fy sur 'axe de
I'ovale. En faisant varier les positions de A, et S;, qui ont été
prises arbitraitement sur les lignes de rappel, nous serions amenés
a tracer des figures affines, et nous obtiendrions toujours le
méme point F.

On voit facilement comment il conviendrait de modifier la
construction, si le foyer extérieur F, figurait parmi les données.

Calcul des coordonnées de S;. — Calculons les coordonnées du
point S; par rapport & un systeme d’axes rectangulaires O, O
situés dans le plan V, I'axe des y étant paralléle aux axes des
cones, I'origine O’ étant le milieu de S; S,. Soit 2¢ la distance
F; Iy des deux foyers intérieurs et 2d la différence des cotes de
S, et de S,. Les coordonnées de S; et S, sont respectivement
(— ¢, d) et (¢, — d). Dans le quadrilatére complet A, A.B.B,,

1 Ce point est a l'intersection de la ligne de rappel IS, avec la droite passant

par \; et par le symétrique de A; par rapport & cette ligne de rappel; ce point tombe
a I'intérieur du cone Sq. — Nous avons supposé I'ovale donnée par deux fovers et par
ses deux sommets. On pourrait supposer donnés les deux foyvers et deux points quel-
conques de la courbe: il serait facile alors de déterminer les contours apparents des
deux cdnes correspondant a ces foyers, et on serait ramené au cas pour lequel est tracée
la figure §.
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le faisceau S, (A;, S,, A,, S;) est un faisceau harmonique. Dans ce
faisceau, les deux génératrices de S; ont pour équations

A=y —d+ Kx+¢) =20 et M=y —d

e +¢) = 0.

L’équation de la droite S; S, est de la forme A 4+ p A" = 0.
En exprimant que cette droite passe par S, nous trouvons

Ne — d

1 I peseweses

e + d

L’équation de la droite S; S,;, conjuguée de S; S, par rapport
aAet A" est A— p A’ = 0, ou, réductions faites,

L2 2 :
Mex + d.oy = — (kK & — d¥) .

Grace au choix fait pour Oz et Oy, il nous suffit pour obtenir
Péquation de S, S;, de changer les signes de ¢ et d et de remplacer
A; par 1, ce qui donne

8 S2
hex +d.y = ket —d¥ .,

Les coordonnées & et » du point S; sont les racines du systéeme
formé par ces deux équations. On a

2 .2 2 -2 ~2 42

Ay 7y ‘)(ZQ 1 A+ Ry St Ak
=yt 2 g el = —d gy + d 3T 52
)\] e )\2 c /\l R /\_, A, — /\, ¢ )\)

Ainsi £ est la distance du foyer extérieur de I'ovale au milieu 0
de I''F,. Soient «; et «, les demi-angles au sommet des deux
cones S; et S,; supposons o, > oy, alors cot ay, < cot z; ou
Ay < ;. Comme (27 — X2) est positif, £ a le signe de — (X’ -+ 1)
-+ 2d2 c’est-a-dire de

D
d- .
2 — cot?a, — cot?a, .
.

Mais d: ¢ est la cotangente de I'angle aigu 3 que fait la droite
S;:S, avec la verticale et, puisque la portion S;S, de cette droite
est intérieure aux deux cones S; et Sy, on a 5< oy < «, et, par
suite, cot 3 >cot o, >cot «,, et & est positif.

dss R 3,
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Formes des deux ovales conjuguées. — Une droite ne peut
couper P’ensemble des deux ovales conjuguées en plus de quatre
points, et, par suite, I'ovale intérieure en plus de deux points,
Iovale intérieure est donc toujours une courbe convexe; elle
a une forme ovale au sens généralement attribué a ce mot. Le
paramétre de la parabole dépend de la position de S, et des
valeurs des demi-angles au sommet des deux cones S; et S,. Sur
la figure le sommet de la parabole se trouve entre S; et S,:
lovale extérieure, elle aussi est une courbe convexe. Mais si
le sommet de la parabole vient se placer au-dessous de la géné-
ratrice B, B., la projection horizontale de l'intersection des cones
tournera en son sommet B, sa concavité vers Pextérieur. Si le
sommet de la parabole est en B, B, sera un point méplat.

Nous verrons plus loin comment il est possible, d’apres
I’équation de I'ovale, de se rendre compte de sa forme.

Cas particuliers. — Si1 S, s’éloigne a I'infini dans la direction
verticale, l'intersection est symétrique par rapport au plan
horizontal mené par S, et le sommet S, est dans ce plan. L’axe
de la parabole passe par S, et S,. L’ovale intérieure et 1'ovale
extérieure se confondent en une méme circonférence de centre
Fi; F, et F; sont conjugués par rapport a cette circonférence
double.

Si, S, se déplagant a 'intérieur du cone, S; vient sur 'axe de ce
cone, I'intersection se compose de deux circonférences horizon-
tales et Sy s’éloigne a 'infini dans la direction horizontale. La
parabole se décompose en deux droites paralleles; I'ovale inté-
rieure et l'ovale extérieure deviennent deux circonférences
concentriques ayant pour centres les deux foyers F, et F,
confondus.

Si S, est sur le cone S;, S, coincide avec S,. L’intersection des
cOnes est une quartique gauche présentant un point double en S,:
sa projection sur le plan V est une parabole & axe horizontal
tangente en S, a la droite S; S,; sa projection horizontale est un
limacon de Pascal.

St deux des cOnes ont la méme ouverture, le sommet du troi-
sitme s’éloigne & Pinfini: la courbe d’intersection est plane.
Sa projection horizontale est une ellipse de foyers F, et F,
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s1 les cones S; et S, sont égaux, une hyperbole de foyers F, et I,
st les cones S, et S, sont égaux et de foyers I'; et I, st les cones
S, et S, sont égaux.

2. — Les équations bipolaires et tripolaire de Uovale.

Soient I et P’ les projections sur le plan horizontal et sur le
plan V d’un point quelconque de la courbe d’intersection des
trois cones, et m, S, S,, S, les projections de ce point et des trois
sommets sur un axe vertical pour lequel nous choisissons un sens
positif XX'. Soient ¢y, ¢, ¢4 les segments =S;, ©S., S, et hy, kg, hy
les segments S,S;, S;S, S;S.. La relation de Chasles, appliquée
successivement aux points S,, S’ S;; 7, S, S’ w, S, Sy; 7w, Sy, S,
nous donne

hy + hy + hy = 0 (1)
¢, + by — vy =0 (2)
o + hy — vy = 0 (3)
0y + Dy — v, = 0. (%)

Multiplions respectivement (2) et (3) par hy et par (— hy) et
ajoutons membre & membre; il vient

vohy — vy (hy + b)) + vyhy = 0

ou, en vertu de (1)
vy 4+ vy + vghy = 01 (5)

Soient . 64, o3 les distances dupoint P aux trois foyers Iy, Iy, Iy
et 74, 75, )4 les valeurs au signe pres des cotangentes des demi-
angles au sommet des trois cones. Convenons de donner a
71, 79, 15 les signes respectifs de ¢y, 0y, ¢5, nous aurons

pum— )\

i N -
2 Vg = hgly

-
-o

Yy 1¢1 o 2

t1, L9 3 €tant toujours positifs.

1 En exprimant hi. he, hg en fonction de vy, ve, vg. on a

vy (rg — o) + o (g — v3) + ry002 — ) ()

Titant données trois segments de méme origine portés sur un méme axe. la somme
algéhrique des produits de chacun d’eux par la différence des deux autres est nulle,
pdisquc, dans cette somme, chaque produit de deux segments intervient deux fois et
avec des signes contraires.
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En v remplacant ¢, ¢y, ¢5 par ces valeurs, les relations (2),
(3), (4) et (5) deviennent

% ~ S kS \ p ¥ & | .
Moy — hase 4 hy =0 . Ty, — hgoy + Ry =0 yoy — o E Ay = 0 .

kl/\lxcl —I-— /1:_,)\2‘02 —-{—- /?3/\393 frsmand O ”

Ce sont les équations bipolaires et tripolaire de l'ovale de
Descartes, rapportées a ses foyers.

S1 nous remarquons que [7\1} 2e ).2! >i).3l, nous voOyons
que I'équation bipolaire étant rapportée aux deux foyers inté-
rieurs F; et F,, le foyer extérieur F; est du c¢6té du fover intérieur
pour lequel le coefficient du rayon vecteur a la plus petite valeur
absolue et que I’équation bipolaire étant rapportée a un foyer
intérieur et au foyer extérieur, le ravon vecteur correspondant
a ce dernier est affecté du coefficient le plus petit en valeur
absolue.

Sur une équation bipolaire 1p + 1'p" — k = 0, il est facile de
voir si les deux foyers auxquels elle est rapportée sont ou non de
méme nature. Remplagons-y successivement o et o' par les
rayons vecteurs (0, 20) et (26, 0) qui correspondent aux deux
foyers: s1 201" — ket 20k — k ont le méme signe les deux foyers
sont intérieurs; dans le cas contraire, un des deux fovers est
intérieur, I'autre est extérieur.

Nous avons (fig. 1) A,y < 0, hy, >0, hy; < 0 et pour 'ovale
intérieure 7, >0, 7, < 0 23 < 0; pour l'ovale extérieure,
>0 2, >02 >0.

S1 nous désignons par £, 2 et 2’ des quantités essentiellement
positives, et si nous supposons 1’ >}, le tableau suivant nous
indique les formes que prennent les équations des deux ovales
conjuguées suivant les foyers auxquelles elles sont rapportées.

Fovers Ovale intérieure Ovale extérieure

A P N . S v

ll“z AS A Ao = k \"C — AZ = 15

2 ] - N7 7 . L3 =

I, ¥y Ao~ Ng' =k A’\o’——/\p:k
T < w N <

Bl he + Wl =k Weo' — ko = k.

Ce tableau montre également comment on passe d’une équation

de Povale & celle de 'ovale conjuguée rapportée aux deux mémes
foyers.
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Etant donnée une équation bipolaire, quand on a calculé la
position du troisieme foyer, on peut calculer les A.

Connaissant la position de deux foyers, il est aisé de trouver
la position des sommets. Désignons par a; (f étant égal a 1,2 ou 3)
a;, b;, b; les distances respectives du foyer F, aux sommets
A, A, By, B, des deux ovales conjuguées, et‘supposons, par
exemple, 'ovale donnée par I’équation bipolaire 3y 5y — 72504 +
hy = 0. Exprimant que le sommet A, est sur la courbe nous avons
A0y — %oty + hy = 0. S1nous appelons 254 la distance des deux
foyers F1Fy, ay, = a; — 2b et la relation précédente devient
lqy — dy(ay — 2b) — hy = 0, d’ol nous pouvons tirer ;.

D autre part,

- - - / ~ /
holly — Pglly == 1,0, — 1oty = — h .

Dot 25(ay — a5) = 1y(ay — a,), relation qui nous fait
connaitre 75. On pourrait, connaissant hy et h; avoir h, par la
relation h; + hy, — hy = 0. Ainsi une des équations bipolaires
d’une ovale étant donnée, nous pouvons trouver les deux autres
équations bipolaires et I’équation tripolaire. Si ’ovale est donnée
par ses trois foyers et son équation tripolaire, nous pouvons
déterminer ses deux sommets et trouver ses équations bipolaires.

D’apres le tableau qui précede, I'équation 2p —i's' =k
représente toujours une ovale intérieure rapportée aux foyers
F, et I, Les autres formes d’équations bipolaires indiquent
simplement que l'ovale est intérieure ou extérieure. Pour savoir
a quels foyers elle est rapportée, il convient de chercher la position
de ses sommets et celle du point milieu 0 de I'intervalle qui les
sépare: la disposition des deux foyers connus par rapport & 0O,
fait voir si ce sont F, Fy ou F,.

)

3. — Lovale courbe anallagmatique.

Si on prend pour pole un quelconque des trois foyers et pour
axe la droite F;F,F,, I"équation de l'ovale en coordonnées
polaires o et # se présente sous la forme ¢? — Po + Q =0,
P étant une fonction linéaire de cos # et ) une constante. La
transformation par ravons vecteurs réciproques autour du pole
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= Q conduit a l’équation () + Po ~{— = 02 = (0. L’ovale

est done une courbe synallagmatique par rapport 4 chacun de
ses foyers pris pour origine '.

Dans la figure 1, le quadrilatére inscriptible A, A;B,B; nous
donne les re]atlons

!/

S,Al .S, B = S,A,. S B, S,A, . S,B, = S,A,.S,B,

S,Al . S,A, = S,B, . 8, B, .

Les deux points de la quartique gauche qui sont sur une méme
génératrice du cone S; correspondent 1'un & 'ovale intérieure,
Pautre & Povale extérieure et sont d’un méme coté de S;; pour
le cone S, les deux points correspondent I'un & 'ovale intérieure,
Pautre a l'ovale extérieure et sont de part et d’autre de S,;
pour le cone S,, les deux points correspondent tous deux soit &
I’ovale intérieure, soit a 'ovale extérieure et sont d’un méme coté
de S;. Chacune des ovales conjuguées est a elle-méme son inverse
par rapport a Fg, la puissance d’inversion m;, étant positive
(cercle d’inversion réel passant par les points de contact des
tangentes menées du foyer extérieur aux deux branches de la
courbe. On a m; = as.as = b,. by; as, as, bs et b, conservant les
significations indiquées plus haut). Les tangentes menées du
foyer extérieur a deux ovales conjuguées sont égales.

Les deux ovales conjuguées sont inverses 'une de ’autre par
rapport & F; et F,: la puissance d’inversion m; relative a F, est
positive (cercle d’inversion réel passant entre les deux courbes);
la puissance d’inversion — m, relative & F, étant négative (cercle
d’inversion imaginaire).

On a

3 ’ 9 ' ’
m. o= a, b, = a b el my, = ay,by, = a,b, .

On trouverait aussi ces valeurs de m,, m,, m; en calculant le
terme constant Q de I'équation monopolaire qui correspond a
chacun des trois foyers.

1 L’ovale €tant symétrique par rapport a 'axe Fi1FeF3 (puisque le plan V est un
plan de symétrie pour les trois cines), et la symétrie par rapport & un axe pouvant étre
considérée comme une inversion dont le centre s’est éloigné a ’'infini dans une direction
perpendiculaire & I’axe de symétrie, 'ovale posséde quatre origines d’anallagmatisme
comme toute quartique bicirculaire,
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Partons du sommet A,: inversion m; nous méne en B,, puis
Pinversion — m. nous meéne en A,, et enfin I'inversion m; nous
rameéne en A;. Donc m;.m’.m; = 1.

Le foyer F; a méme puissance par rapport aux deux cercles de
diametre A; A, et B, B,: il est done sur leur axe radical. Puisque,
connalssant 1’équation bipolaire 437, — %y,0, + Ay = 0 d’une
ovale, on en déduit facilement I’équation de l'ovale conjuguée
et la position des sommets de cette derniére, nous obtenons ainsi
une seconde construction du foyer extérieur F;. On voit sans
peine que I, et ', pourraient aussi se trouver par une construction
d’axe radical: F; est sur I'axe radical des deux cercles décrits
sur A;B; et A,B, comme diamétres, et la corde commune aux
deux cercles décrits sur A; B, et A,B; comme diamétres passe
par .

Cercle tangent a Uovale et passant par deux points donnés dont
un de ses foyers. — L’inversion anallagmatique autour du foyer
par lequel doit passer le cercle & construire transforme ce cercle
en une droite tangente & 'ovale et passant par le point inverse
de I'autre point donné. Le point inverse de son point de contact
avec 'ovale est le point ou le cercle & construire touche 'ovale.
En particulier, le cercle passant par I'; et F, et tangent & 'ovale
se déduit par inversion autour du foyer F,, par exemple, de
la tangente & l'ovale conjuguée qui passe par I'inverse de F,.

4. — Sécantes passant par un foyer.

D’une propriété bien connue de la transformation par rayons
vecteurs réciproques, il résulte immédiatement que: 1° toute
sécante a 'ovale menée par I} est bissectrice des directions des
tangentes aux deux points situés d’un méme coté de 'axe ou
elle coupe les deux ovales conjuguées; 2° toute sécante menée
par F, est bissectrice des directions des tangentes aux deux
points situés de part et d’autre de I'axe ou elle coupe ces deux
ovales; 3° toute sécante menée par I'; est bissectrice des directions
des tangentes aux deux points ou elle coupe chacune des ovales
intérieure et extérieure.
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Si entre I’équation de ’ovale en coordonnées polaires rapportée
a un de ses foyers et ’équation d’une droite quelconque de son
plan
o(p cosl + ¢ sinb) = »r

on élimine #, on obtient une équation du quatriéme degré en
dont les quatre racines sont les distances des foyers aux points
d’intersection de la droite et de la courbe. Dans cette équation
le quotient des coefficients de 2 et de p* est une constante: done
la somme des quatre rayons vecteurs menés d’un foyer aux points
d’intersection de la courbe avec une droite quelconque est
constante. Nous pouvons le voir par des considérations géomé-
triques simples dans le cas ou la sécante passe par le foyer.

Par I’axe de I'un des cones, S; par exemple, menons un plan
vertical quelconque V'. L’intersection de V' avec le cone S, est
une hyperbole 4 axe réel vertical. Le centre S, de cette hyperbole
est toujours dans le plan horizontal qui passe par S,, et 'angle de
ses asymptotes est égal & angle au sommet du cone S, (fig. 2).

L’intersection de V' avec le ¢cone S, se compose de deux généra-
trices de ce cone. Soient Qy, Q,, Ry, R, les points d’intersection
de ces deux génératrices avee Uhyperbole, et S;Q, S;R les dia-
metres conjugués des cordes Q; Q, et R; R,. Ces diamétres sont
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comme les cordes correspondantes également inclinés sur la
verticale. Nous avons

8,Q; + 5,Q, = 25,Q et SR, + S;R, = 28, R .

Faisons tourner le plan V' autour de 'axe du cOne S,: Pangle
des deux génératrices passant par S; ne change pas, S, se déplace
dans V' le long d’une droite horizontale et vient en S,. L’angle
des asymptotes ne change pas et par suite le systéme des deux
diametres conjugués subit une translation horizontale: les
déplacements de ) et R sur les génératrices de S, sont égaux et
de sens contraire et la somme S;Q + S; R reste constante, quelle
que soit 'orientation de V’'. Projetons sur la trace horizontale
de V’': nous voyons que la somme des distances d’un foyer aux
points d’intersection de la courbe avec une sécante quelconque
passant par ce foyer est constante.

Si nous prenons comme sécante ’axe F;F, nous voyons de
plus que la constante est la méme pour les foyers F, et F,.

5. — Le foyer singulrer.

Les trois points I, F,, I';. auxquels leur propriété optique
a fait donner le nom de foyers, sont aussi des foyers répondant
a la définition de Pliicker: le calcul prouve que ce sont les points
d’intersection de tangentes menées & l'ovale par les points
cycliques du plan.

L’ovale posséde aussi un foyer singulier: elle passe par les
points cycliques du plan et a des asymptotes qui la touchent en
ces points.

S1 nous supposons que S, se déplace sur la verticale F,S,
(fig. 1), c’est-a-dire si nous faisons varier s, en laissant fixes 2y
et 7,5, nous obtenons une famille d’ovales définies par la relation
Mp1 + Aeps = — hg, 0U hy est un parameétre variable. Dans
I’équation en coordonnées cartésiennes correspondante, les termes
du quatrieme et du troisieme degré sont indépendants de kg, et,
par suite, toutes ces ovales ont les mémes asymptotes 1. Il nous

1 L’équation cartésienne de l'ovale de Descartes ne différe que par une constante
de celle du limacon qui fait partie de la famille. L.’ovale est le lieu des points d’égale
puissance par rapport au limacon.

9
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suffira donc d’étudier ces asymptotes dans le cas particulier
ot S, est sur le cone S;, ou ovale devient un limagon de Pascal.
En regardant cette courbe comme une conchoide de cercle, et en
prenant comme pole son point double et comme axe polaire son
axe de symétrie, on écrit immeédiatement son équation en
coordonnées polaires

o = 2rcosfh 41 ou ¢ — 2rgcosf + lo = 0.

Passant aux coordonnées cartésiennes rectangulaires, le pole
étant pris pour origine et I’axe polaire pour axe des x, on a

(@ + yP — 2m) = P+ y)

Les points cycliques sont points doubles: les tangentes aux
points cycliques y rencontrent la courbe en trois points confondus.
Soit y = 1x + J une de ces asymptotes; ’équation aux abscisses
des points de rencontre de cette droite avec la courbe doit avoir
trois racines infinies. En portant la valeur y = ix + 0 dans
I'équation de la courbe, et en exprimant que
le coefficient de z? est nul, nous obtenons la
relation (0 -+ ri)2 = 0. Les points cycliques
sont des points de rebroussement de I'ovale,
et les asymptotes se coupent en un point
réel (x = r,y = 0) au centre du cercle de
base du limacon. Ce point est le foyer sin-

gulier commun aux ovales de la famille . ;
hoy F kops = —hy . ' ,
Calculons la valeur du rayon r en fonetion = ;\ X3 F
de la distance 2¢ des deux foyers et des TEes
coeflicients A; et 2,. Nous avons (fig. 3), en Fig. 3.

appelant C I’extrémité du diametre du cercle

de base du limacon F,C = 2r. D’aprés la définition de la
conchoide, ce cercle passe & égale distance de B et de A, points
du limagon situés sur son axe. On a 2 F,(. = F,A + F,B.

1 Si nous supposons ! = 2r, nous n'avons plus affaire & une ovale de Descartes,
mais a une cardioide. Le centre du cercle de base de la cardioide est un foyer
singulier.
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D’autre part,

AgA) = 7y oA — & (ke — F,A)  don I,A e
= 4. FoA = X (h¢ — K d'ou ? = T s
0 2 2 1 2 2 )\1 + ,\2
A
BB = 3, F,B — &, (F,B — 4¢)  don  F,B e L
Ay — Ay
Par suite
Lo MG WAL EB L .2/\c0
> 7 RIS WL W W U

Désignons par F, le foyer singulier; ses distances aux trois

foyers ordinaires sont !

I, est extérieur a I'intervalle I, 17, et placé du coté de I,.

II. — NORMALE A L’OVALE.

’

L’ovale étant donnée par I’équation 2p + 1'c’ = h rapportée
a deux foyers F et F’, nous prenons sur la courbe un point I,

Fig. 4. Fig. 5.

nous portons sur les rayons vecteurs FI et F’'I des segments
IB =1 et IB"=1’, et nous complétons le parallélogramme
BIB'T’ (fig. 4 et 5): sa diagonale II’ est la normale & 'ovale.

1 En prenant I'g pour origine, I'¢quation cartésienne de l'ovale prend une forme
ou F Iy, FFe et I Fg interviennent de facon symdétrique, se prétant de facon commode
a I’étude de la courbe.
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La normale rencontre 'axe FF’ en un point G situé entre F et}F’
si 7 et ).’ sont de méme signe (fig. 4) et en dehors de l'intervalle
FF’ si % et 2’ sont de signe contraire (fig. b). Le tableau des
équations bipolaires montre que pour I'ovale intérieure, la nor-
male passe entre F; et F, et que pour l'ovale extérieure, elle
rencontre I’axe en des points extérieurs & 'intervalle F; F,.

Soient i, i’ et v les angles que fait la normale avec les rayons
vecteurs et avec 'axe FF'. Les deux triangles CFI et CF’'I nous
donnent |

CF sin ¢ cr’ sin
- - et == "
o siny o siny
D’ot
ou
CF sin i ¢
CF"  sin i o" ~

Dans le triangle IBI'

sin i L [)\’l

sin ¢/ f)\

Done
CFkF

Le rapport des segments déterminés sur F¥' par la normale a
Povale est égal au produit du rapport des rayons vecteurs adjacents
par un facteur constant.

Réciproquement, si la normale @ une courbe détermine sur
la droite passant par deux points fixes F et F' deux segments dont
le rapport est égal au produit du rapport des deux rayons vecteurs
adjacents par un facteur constant, la courbe est une ovale de Des-
cartes. En effet, si

FC _ [V] ¢

F'C = 1)\ I .O/ )

nous pouvons construire sur les directions des rayons vecteurs
un parallélogramme de cotés égaux a A et 2.

Si nous connaissons le point d’intersection G d’une normale
avec I’axe, nous connaitrons le rapport p: p’ et, si nous écrivons
Iéquation de la courbe sous la forme

y P N7 4
()\ ;i + A ) P fromand /{ .
\
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nous pouvons déterminer p’ et par suite p. Alors le point I est
connu et CI est la normale cherchée.

Pour trouver I’angle - de la normale avec 'axe, projetons le
contour I1'B sur I’axe focal et sur une droite qui lui soit perpen-
diculaire. Désignant par ¢ et ¢’ les angles des rayons vecteurs
avec ’axe, nous obtenons

Il"cosy — hcoso — Wceose = 0, IVsinv nsing — Asine' = 0 .

9 \
D’ou
Asing + A" sin ¢’

BT

cos o + 2 sin ¢’

III. PoINTS OU LOVALE PRESENTE UN MAXIMUM OU UN MINIMUM
DE COURBURE. '

1. — Sommets de Uovale.

Par raison de symétrie, les sommets situés sur I’axe correspon-
dent & un maximum ou & un minimum de courbure.

1. Construction du centre de courbure relatif a un sommet. —
Si le point I (fig. 4 et 5) se rapproche indéfiniment du sommet A,
le point C, intersection de la normale en I avec FF;, tend vers
une position limite C, qui est le centre de courbure en A, puisque

par raison de symétrie, ce centre de courbure doit se trouver

sur FF' et on a
Cy ¥
C

)\I i CO 1\

o7 T [h] CeAT

Le point G, divisant FF’ dans un rapport donné se détermine
par une construction bien connue et cette construction est appli-
cable a I’ellipse (A = ') et & ’hyperbole (A = — 1').

2. Sommets de l'ovale intérieure. — Quand le point I se déplace
sur une ovale intérieure a partir du sommet A,, voisin du foyer
F,, p, augmente et ’équation de la courbe %A ¢y + 250, = — hy
montre que p, diminue. Alors p, : p, augmente, ainsi que CF, : CF,

13’ £
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et le point C se rapproche de F, et de A,. Lia courbure passe done
par un maximum en A;. On verrait de méme qu’elle passe par un
maximum en A, L

3. Sommets de Uovale extérieure. — Considérons ’ovale exté-
rieure comme la transformée de I'ovale intérieure conjuguée en
prenant F, pour centre d’inversion. Le cercle osculateur en A,
devient par inversion le cercle osculateur en B, et comme le
cercle osculateur en A; est intérieur & I'ovale intérieure, le cercle
osculateur en B, est extérieur a I’ovale extérieure. D’autre part,
le foyer F, est intérieur au cercle osculateur en A;, puisque les
normales & 'ovale intérieure rencontrent 'axe entre les deux
foyers: Iy est donc intérieur au cercle osculateur en B;: en ce
sommet la courbe tourne sa concavité vers F, et présente un
minimum de courbure.

En ce qui concerne le sommet B,, il faut distinguer plusieurs
cas:

a) Sile foyer Iy est a I'intérieur du cercle osculateur en A,

il est aussi & I'intérieur du cercle osculateur en B, et, ce cercle
étant extérieur a la courbe, I'ovale extérieure tourne en B, sa
concavité vers I'; et présente un minimum de courbure.
| £) Sile cercle osculateur en A, passe par Fy, il se transforme en
une droite, et 'ovale extérieure présente au sommet B, un point
| méplat.
g 7) Enfin, s1 le foyer F'; est extérieur au cercle osculateur en
| A,, 1l est aussi extérieur au cercle osculateur en B, et, ce cercle
étant extérieur a la courbe, I'ovale extérieure tourne en B, sa
convexité vers Iy et présente un maximum de courbure 2.

3 t On peut obtenir le méme résultat d’une facon plus classique, mais qui exige quelques
X calculs. Soit un cercle de rayon R tangent au sommet de I’ovale. Prenons pour axes
1 de coordonnées 'axe et la tangente au sommet. Les coordonnées d’un point P du cercle
sont x = R (1 ——cos ) et y = R sin 9. Dans x et y remplacons cos P et sin @ par leurs
développements en série en fonction de 9 et négligeons les puissances supérieures a
: la quatricme. Calculons F;P et FoP. Portant leurs valeurs dans le premier membre
3 de I’équation de I'cvale, nous obtenons une expression de la forme PP2 + qP4. Ecrivons
: que le coeflicient de 92 est nul: ’équation p = 0 nous fait connaitre le rayon Rg du
cercle osculateur. Le signe du coefficient de 94, quand on y remplace R par Ry, permet
de savoir si la courbure au sommet envisagé est maxima ou minima.

2 Dans ce dernier cas, le foyer F; est intérieur au cercle osculateur en Ay et extérieur
au cercle osculateur en A,. Il y a donc sur chacune des moitiés de l'ovale intérieure
entre A; et Ag un point tel que le cercle osculateur en ce point passe par Fy. et le cercle
osculateur au point correspondant de I'ovale extérieure est une droite: ce point homo-
logue est un point d’inflexion.

Il y a entre les valeurs de Py, P, i1, io qui correspondent aux points d’inflexion une

[’Enseignement mathém., 28¢ année; 1929, 13
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4. Condition pour que Uovale extérieure soit une courbe convexe.
— Nous avons vu plus haut comment la forme d’une équation
bipolaire nous permet de reconnaitre §’il s’agit d’une ovale
intérieure ou d’une ovale extérieure. Cherchons la condition pour
qu'une ovale extérieure soit une courbe convexe. Des considéra-
tions d’optique vont nous guider.

La relation 2 sinz = |1’| sini’ nous montre que, si nous envisa-
geons 'ovale comme la méridienne d’'un dioptre pour lequel le
premier et le second milieu ont des indices respectivement égaux
a A et A" et si nous supposons un point lumineux placé en I dans
le premier milieu, les rayons réfractés forment un faisceau homo-
centrique de centre I'’. Supposons 'ovale rapportée a ses foyers
intérieurs et prenons F, comme point-objet. Si 1'ovale possede
en B, un point méplat, les rayons lumineux venant de F, sont
réfractés au voisinage de B, comme ils le seraient sous I'incidence
normale par un dioptre plan, et on a A,F,B; = 3, F,B, ou
dyb, = A b,. Si la courbe tourne en B, sa concavité vers F,,
I’image F, se rapproche de B,, et on a 2,0,<2,b,: c’est la
condition pour que ’ovale extérieure soit une courbe convexe.

2. — Points situés en dehors de U'axe et présentant un maximum
ou un mintmum de courbure.

Soit M un des points de contact de la circonférence menée
par F; et F, et bitangente & I'ovale. En ce point M, I’angle
F,MF,, formé par les rayons vecteurs, passe par un maximuin.
Il est égal a (i, + t,) pour 'ovale intérieure (fig. 6) et a (1; —1,)
pour I'ovale extérieure. Nous avons donc, en M, d(i; & iy) = 0.
D’autre part, de la relation

Ay sing = A, siniy, , nous tirons A cos iy diy = Ay cos iy diy .

relation simple qu’on trouve aisément par des considérations d’optique. Dans le plan
de la figure, les rayons lumineux émanés de Fg sont réfractés en ces points par un
dioptre ayant ’ovale pour méridienne comme ils le seraient par un dioptre plan oscula-
teur. La relation qui détermine la position de la focale tangentielle est

21€0821; €082y
P 2
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Par suite d (¢; + i5) = 0 équivaut a

)\ cos 7
1>(l11 =
o COS Iy

Le facteur entre parenthéses ne pouvant s’annuler, di; = 0
et di, = 0; alors i; et i, passent en M par un maximum. Soit
MJ la normale.

Fig. 6.

Prenons sur l'ovale un point M’ infiniment voisin de M;
la droite F; M’ prolongée rencontre la circonférence au point P.
Les angles inscrits F;PJ et ;MJ sont égaux. La normale M’,
faisant avec ;M un angle égal a 7, au second ordre prés, puisque
i, est un maximum, est paralléle & PJ et, puisque M'P est du
second ordre, cette normale passe, au second ordre prés, par le
point J. J est par conséquent un point de rebroussement de la
développée et en M la courbure de ’ovale passe par un minimum
(pour I'ovale intérieure) par un maximum (pour 'ovale exté-
rieure). Nous voyons donc que le cercle tangent en M ayant un
rayon égal a la moitié du rayon de courbure en ce point passe
par les deux foyers intérieurs. Entre les angles i, et i,, les rayons
vecteurs p, et p, et le rayon de courbure R nous avons en M
les relations

2R —_ Pl — P2

Cos 14 cOoSs Iy

En tout point de Povale y = ¢; — t; = ¢, + i, d’ou
dy = do, — diy = do, + di, .

En M on a dy = do, = dg,.
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IV. — APPLICATIONS A L’OPTIQUE.

1. — Ovales stigmatiques par rapport & deux poinis donnés.

On sait depuis Descartes que la méridienne d’un dioptre
stigmatique pour deux points donnés P et P’, situés dans deux
milieux optiques d’indices respectifs 1 et n, est une ovale de
Descartes dont ces points sont deux foyers 1.

On obtient I’équation de cette ovale en appliquant la loi
du tautochronisme, c’est-a-dire en écrivant que le temps mis par
la lumiére pour aller dans le premier milieu du point P & un point 1
de 'ovale et du point I au point P’ dans le second milieu est
une constante. Les rayons vecteurs p et o’ étant positifs, on
affectera p du signe + ou du signe — suivant que P sera un point
lumineux réel ou virtuel; o’ sera affecté du signe +- ou du signe —
suivant que P’ sera une image réelle ou virtuelle. Désignant par
p, et p; les distances de P et P’ au point S ou la méridienne
rencontre I’axe PP’, nous écrivons la loi du tautochronisme sous

la forme
+ ¢ £ ng’ = 4 g0 &k np

Les deux points P et P’ étant donnés, il y a pour toute position
de S une ovale stigmatique, qui suivant la distribution des points
P, P’ et S peut étre une ovale intérieure ou une ovale extérieure.
D’aprés ce qui a été dit plus haut (I § 2 et III, § 1), nous
pourrons reconnaitre sa nature, savoir a quels foyers elle est
rapportée et dire si au point S elle présente un maximum ou un
minimum de courbure. Des considérations trés simples vont
nous fournir directement ce dernier renseignement dans le cas ou
P et P’ sont conjugués par rapport a un dioptre sphérique de
sommet S.

Supposons que le dioptre sphérique tourne sa convexité du

1 Un systéme optique est stigmatiqgue pour deux points P et P’ si tous les rayons
incidents venant de P ont pour conjugués des rayons passant par P’/. Le systéme est
aplanélique quand il est stigmatique pour les points infiniment voisins de P et P/,
situés au voisinage de son axe dans deux plans perpendiculaires & I’axe.

et o s

i
3
i
3
3
5
3
]
E]
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¢Oté d’oll vient la lumiére et que le second milieu est plus réfrin-
gent que le premier (n > 1). Nous avons a distinguer un certain
nombre de cas. ,

1. P réel infiniment éloigné; P’ coincide avec le foyer-image.
L’ovale se réduit & une ellipse, présentant en S un maximum de
courbure.

2. P réel plus éloigné de S que le foyer objet; P’ est réel

(fig. 7). La condition du tautochronisme donne o + ns’ = k.
(&) I( ‘ (f1)
P s\ © p’
Fig. 7.

L’ovale, indiquée schématiquement en pointillé, est une ovale
intérieure rapportée aux foyers F; et Fy (voir le tableau, I §2) et
P’ ne peut correspondre a F, puisque 'on a n > 11 Donc P
correspond a Fy et P a F,. Il y a un mazximum de courbure en S.
3. P réel placé au foyer-objet; P’ est & infini. L’ovale devient
une hyperbole. Mazimum de courbure en S.
4. P réel et P’ virtuel (fig. 8), Nous avons

o nEg = g, no < 0

\ )

tF) (f2) /
P’ Ps\ 0
Fig. 8.

puisque ¢ > o et n >1. Il s’agit d’une ovale extérieure. Comme
en S elle tourne sa convexité vers les foyers P et P/, P’ correspond
aF,et PalF, Ilyaun mazximum de courbure en S.

5. P et P’ coincident avec S. L’ovale se réduit & un point.

6. P virtuel placé entre le sommet S et le centre de courbure O
du dioptre sphérique; P’ est réel entre P et O (fig. 9). Nous avons

-——p—{—n‘o’:——oo—:—nro’ > 0
} lO
Foat
skpp'o

Fig. 9.

1 P’ ne peut jamais correspondre a F3, ni P a F; .




198 M. DUFOUR

puisque p, > p, et n >1. Cest 'équation d’une ovale extérieure.
La courbe tournant en S sa concavité vers P et P’, P’ correspond
aFi et PaF, Ilyaun minimum de courbure en S.

7. P et P’ coincident avec 0. L’ovale se réduit au cercle méri-
dien du dioptre puisque les foyers F, et F, viennent en coinei-
dence.

8. P virtuel au-dela de 0 et en deca du point stigmatique objet
du dioptre (fig. 10).

// (Fa(F3)
S\, OPP
Fig. 10.

Si P est virtuel et placé au-dela de 0, P’ est réel et placé entre
0 et P. Nous avons

’

— o + np’ = — g + npo

Quand P se déplace vers la droite & partir de 0, — o, 4+ n p(', part
de la valeur positive (n — 1) SO et décroit pour s’annuler quand
P atteint le point stigmatique objet. Nous reconnaissons I’équa-
tion d’une ovale extérieure. Il y a un mintmum de courbure en S.

9. P virtuel placé au point stigmatique objet, P’ au point
stigmatique image. Nous avons — p + ns' = 0. L’ovale se
réduit au cercle méridien du dioptre sphérique.

10. P virtuel placé au-deld du point stigmatique objet; P’ est
entre O et P (fig. 11). Nous avons

—p—{—np’:-——\oo—(—np(')<0‘
{ (F2) (F3)
S\ 0 P’ P

Fig. 11.

C’est Iéquation d’une ovale intérieure rapportée aux foyers
F,et Fy: Fyest en P', Fyen P. Il y a un maximum de courbure
en S.
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On peut faire la méme discussion si, n étant toujours plus
grand que 1, le dioptre tourne sa concavité du coté d’ou vient la
lumiére. Enfin, pour passer aux cas ou on aurait n < 1, il suffirait
d’appliquer le principe du retour inverse des rayons lumineux.
- Ce mode de raisonnement s’applique aussi aux miroirs stigma-
tiqgues pour deux points donnés. Dans le cas de la réflexion
(n = — 1), Povale se réduit & une conique, dont la courbure aux
sommets sur I’axe est toujours un mazimum.

2. — Aberration du dioptre sphérique.

Pour les rayons centraux, 'action du dioptre sphérique est
la méme que celle du dioptre stigmatique ayant pour méridienne
I'ovale dont le cercle osculateur en S coincide avec le cercle 0.
Si cette ovale présente en S un maximum de courbure (fig. 12),
I'effet optique réalisé en chaque point I par la substitution du
dioptre stigmatique au dioptre sphérique est celui que produirait
en I 'adjonction au dioptre sphérique d’un prisme d’angle treés
petit & aréte tournée vers I’axe. Ce prisme déviant les rayons vers
sa base, nous en concluons que les rayons marginaux réfractés
par le dioptre sphérique rencontrent ’axe en un point P’’ plus
rapproché du sommet S que le point P’ ou se croisent les rayons
centraux. L’aberration est dite sous-corrigée. Si 'ovale présente
en S un minimum de courbure (fig. 13), l'effet optique réalisé

p' Pll
Fig. 12. Fig. 13.

par la substitution du dioptre sphérique au dioptre stigmatique
est celul que produirait en I 'adjonction au dioptre stigmatique
d’un petit prisme a aréte tournée vers 'axe: nous en concluons
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que les rayons marginaux réfractés par le dioptre sphérique
rencontrent ’axe en un point P’ plus éloigné de S que P’.
L’aberration est dite surcorrigée .

D’apreés ce qui a été dit au paragraphe précédent, I’aberration
du dioptre sphérique convexe et convergent est surcorrigée
quand le point lumineux objet P se trouve entre le sommet du
dioptre et son centre de courbure; quand P est extérieur a cet
intervalle, I’aberration est souscorrigée. L’aberration du miroir
sphérique garde toujours le méme sens, quelle que soit la position
du point-objet sur 'axe: elle est toujours souscorrigée pour le
miroir sphérique concave et surcorrigée pour le miroir sphérique
convexe.

3. — Surface de Uonde réfractée de chemin optique nul dans le cas
d’un dioptre sphérique et d’une onde tncidente sphérique.

L’ovale de Descartes se rencontre encore quand on cherche la
surface de 'onde réfractée de chemin optique nul donnée par
un dioptre sphérique, le point-objet A étant a distance finie 2.

1 On peut, en précisant ces indications, calculer la valeur de I’aberration. Prenons
sur I'ovale et sur son cercle osculateur au sommet deux points voisins situés a une
méme distance infiniment petite h de I’axe. Menons en ces points les normales 4 I’ovale
et au cercle. Les angles 7 et 9o qu’elles font respectivement avec I’axe sont des infiniment
petits; leur différence = | P—%o | est I’angle du petit prisme additionnel. Pour
avoir 7, nous utilisons I'expression de tg 7 donnée dans la deuxiéme partie de cette
note, en développant les sinus et cosinus en série jusqu’au.troisiétme ordre inclusivement
et tenant compte de la relation qui existe:entre les distances de deux points conjugués
au sommet d’un dioptre sphérique d’indice n et de rayon R. Nous trouvons

'ﬁn—{—i.z
@ == 2n2'l,(_|),

w étant I’angle du rayon incident avec la droite joighant le point d’incidence au point
stigmatique objet du dioptre sphérique. La déviation imprimée par ce primse d’angle ¢

au rayon réfracté est
n2—1 .
a‘:(n——-i)ﬁ,p: an L20).

Le déplacement correspondant du point d’intersection de ce rayon avec ’axe est
3.1P’: sin ¢’. Comme g est du troisieme ordre infinitésimal et ¢/ du premier ordre,
nous pouvons remplacer sin ¢’ par la partie principale de 9/, ¢’est-4-dire par h: SP’,
et IP’ par SP’ qui lui est égal & un infiniment petit du second ordre prés. Donc

. 2
SP’ n2—1 SP’
pr o= 3. - .
P'P J h 2n2

2w,

2 Si le point-objet est & I'infini, la surface d’onde réfractée de chemin nul est rejetée
a linfini.
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Soient O le centre de courbure du dioptre, Al unrayon incident
quelconque, OI la normale (fig. 14 et 15). La circonférence menée

5 ™C

0 B - *7A
P

Fig. 14.

par A et I et tangente a OI coupe la droite OA en un point fixe B et
OB.0OA = OI2. Soient P le second point ou le rayon réfracté IP

Fig. 15.

coupe la circonférence AIB, et C l'intersection de OA et de IP.
Le triangle AIP nous donne

PI sin i’ 1
Al sini n o

Les temps employés par la lumiére pour aller de A a I dans
le premier milieu et de P & I dans le second milieu sont égaux.
Le lieu du point P est la méridienne de la surface d’onde réfractée
de chemin optique nul. Nous avons, dans les triangles PAC et
PBC,

P_A__—s_iny ot PBM sin y
CA  sin APC CB ~ sin BPC
D’ou
(ilé o sin BPC PB CB sin BAT PB

on —_— =

CA ~ sin APC  PA CA sin ABI " PA °
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Le triangle AIB donne

sin BAI _ BI
sin ABI ~ Al °
Donec
CB Bl PB_SB PB CB R —R!:a PB
CA~ Al PA  SA PA ou CA — a PA

D’aprés ce que nous avons vu plus haut (II, § 1), PC est nor-
male & une ovale de Descartes dont deux foyers sont A et B.

=

Un des sommets est & une distance Eﬁé du sommet du dioptre.

La connaissance de la nature de cette ovale donnerait directement
le sens de aberration pour le point A, mais le procédé artificiel
indiqué au paragraphe précédent est plus simple.

4. — Condensateur cardioide.

Nous signalerons encore ici, bien que l'ovale de Descartes
n’y intervienne pas, une application catoptriqgue de la cardioide.
La cardioide peut étre considérée comme engendrée par un
point d’un cercle qui roule extérieurement sur un cercle égal.

T T

Fig. 16.

Soient O le centre du cercle de base, O" une position quelconque
du centre du cercle mobile, I le point correspondant de la car-
dioide et S son point de rebroussement (fig. 16). Le trapéze

et
[ e AT
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SIO’O est isocele. La droite IA normale & la cardioide est bissec-
trice de ’angle SIO’; O'B est paralléle a SO; OO’ est bissectrice de
Iangle formé par les droites O'I et BO’ prolongée. Tragons le
cercle ayant O pour centre et passant par O’.

Un rayon lumineux XO’ paralléle a ’axe se réfléchit sur le
cercle suivant O'I, puis sur la cardioide suivant IS. L’association
du miroir sphérique convexe, ayant pour centre le foyer singulier
et de rayon égal au diameétre du cercle de base, & un miroir
concave de révolution, ayant pour méridienne la cardioide
transforme un faisceau de rayons paralleles 4 ’axe en un faisceau
homocentrique de sommet S. Ce systéme optique est stigmatique
pour le point S et le point infiniment éloigné de son axe et, de plus,
il est aplanétique, car le rayon incident et le rayon deux fois
réfléchi se coupant sur la circonférence de cercle de centre S
et de rayon SB = 00’, la condition d’aplanétisme (condition des
sinus) se trouve satisfaite. Ce systéme catoptrique est réalisé dans
le condensateur cardioide de Zeiss, qui s’emploie avec le micro-
scope pour l’éclairage & fond noir et 'ultramicroscopie. Comme
on n’utilise qu’une faible portion de la cardioide au voisinage du
point I, on la remplace par une portion de son cercle osculateur
en I. Le rayon de courbure de ce cercle se détermine facilement.
Le miroir concave employé est alors une zone empruntée & la
surface d’un miroir torique.
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