Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 28 (1929)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LES OVALES DE DESCARTES

Autor: Dufour, M.

DOI: https://doi.org/10.5169/seals-22597

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

SUR LES OVALES DE DESCARTES

PAR

M. Dufour (Nancy).

C'est au sujet de leurs applications à l'Optique que j'ai été conduit à m'occuper des ovales de Descartes. La présente note a pour but d'en exposer certaines propriétés d'une façon assez simple et intuitive ¹.

I. — L'OVALE PROJECTION D'UNE COURBE GAUCHE.

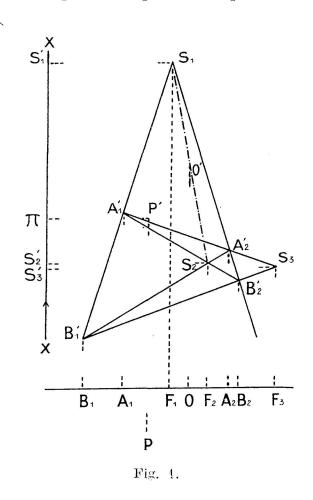
On sait que l'intersection de deux cônes de révolution à axe vertical a pour projection horizontale une ovale de Descartes, et pour projection verticale sur le plan V passant par les axes des deux cônes une parabole à axe horizontal. Les foyers F_1 et F_2 de l'ovale sont les projections horizontales des sommets S_1 et S_2 des deux cônes. En faisant intervenir ainsi la géométrie dans l'espace, on peut établir assez simplement certaines propriétés de l'ovale.

§ 1. — Les trois foyers ordinaires.

Soient A_1' , A_2' , B_1' , B_2' les points d'intersection des génératrices situées dans le plan V (fig. 1). Les angles $B_1'A_1'B_2'$ et $B_1'A_2'B_2'$ étant l'un et l'autre égaux à la somme des demi-angles au sommet des deux cônes S_1 et S_2 , les quatre points A_1' , A_2' , B_2' , B_1' sont sur une circonférence. Par suite les angles $B_2'A_1'A_2'$ et $B_2'B_1'A_2'$ sont égaux, et on en conclut sans peine que les deux droites

¹ Ce travail a été transmis à la Rédaction, par M. Elie Cartan, le 20 avril 1928.

 $A'A_2'$ et $B_1'B_2'$ sont également inclinées sur la verticale. On peut donc les considérer comme étant deux génératrices d'un troisième cône de révolution à axe vertical ayant pour sommet leur point de rencontre S_3 . L'intersection des deux cônes S_1 et S_3 a pour projection sur le plan V la même parabole à axe horizontal que l'intersection des cônes S_1 et S_2 , car les projections de ces deux courbes d'intersection passent par A_1' , A_2' , B_1' , B_2' et par quatre points ne passent que deux paraboles (dont les axes



n'ont pas la même direction). Ainsi les trois cônes S_1 , S_2 , S_3 ont une ligne commune dont la projection horizontale est une ovale de Descartes. Cette ovale peut donc être définie par deux quelconques des trois cônes et la projection horizontale F_3 de S_3 est son troisième foyer. L'ovale a deux foyers intérieurs F_1 et F_2 et un foyer extérieur placé du côté du sommet intérieur F_2 , pour lequel la distance au sommet correspondant de la courbe a la plus petite valeur ($F_2A_2 < F_1A_1$).

La ligne commune aux trois cônes se compose de deux portions à chacune desquelles correspond une ovale distincte. Nous pouvons donner à ces deux ovales conjuguées les noms d'ovale intérieure et d'ovale extérieure. Les deux ovales conjuguées, qui sont données par une même équation rationnelle du quatrième degré, présentent des caractères très différents en ce qui concerne leurs normales.

Construction géométrique du troisième foyer. — Supposons une ovale de Descartes donnée par deux de ses foyers (F₁ et F₂ par exemple) et par ses sommets A₁ et A₂. Sur les lignes de rappel menées par A₁ et F₁, prenons arbitrairement deux points A₁ et S₁, situées à des distances différentes de l'axe A₁A₂. Le cône S₁ est défini par sa génératrice S₁A₁. L'intersection de son autre génératrice contenue dans le plan de la figure avec la ligne de rappel menée par A2 nous donne le point A2. Prenons sur la ligne de rappel menée par F₂ le point S₂ tel que les droites S₂A'₁ et S₂A'₂ fassent des angles égaux avec la verticale ¹. Ces droites déterminent les points B' et B', et l'intersection de A' A' avec B'₁B'₂ nous donne le sommet S₃ qui se projette en F₃ sur l'axe de l'ovale. En faisant varier les positions de A' et S₁, qui ont été prises arbitraitement sur les lignes de rappel, nous serions amenés à tracer des figures affines, et nous obtiendrions toujours le même point F₃.

On voit facilement comment il conviendrait de modifier la construction, si le foyer extérieur F₃ figurait parmi les données.

Calcul des coordonnées de S_3 . — Calculons les coordonnées du point S_3 par rapport à un système d'axes rectangulaires O_x , O_y situés dans le plan V, l'axe des y étant parallèle aux axes des cônes, l'origine O' étant le milieu de S_1 S_2 . Soit 2c la distance F_1 F_2 des deux foyers intérieurs et 2d la différence des cotes de S_1 et de S_2 . Les coordonnées de S_1 et S_2 sont respectivement (-c, d) et (c, -d). Dans le quadrilatère complet $A_1 A_2 B_2 B_1$,

¹ Ce point est à l'intersection de la ligne de rappel F_2S_2 avec la droite passant par A_1' et par le symétrique de A_2' par rapport à cette ligne de rappel; ce point tombe à l'intérieur du cone S_1 . — Nous avons supposé l'ovale donnée par deux foyers et par ses deux sommets. On pourrait supposer donnés les deux foyers et deux points quelconques de la courbe: il serait facile alors de déterminer les contours apparents des deux cônes correspondant à ces foyers, et on serait ramené au cas pour lequel est tracée la figure 1.

le faisceau $S_1(A_1', S_2, A_2', S_3)$ est un faisceau harmonique. Dans ce faisceau, les deux génératrices de S_1 ont pour équations

$$\Delta = y - d + \lambda_1(x+c) = 0$$
 et $\Delta' = y - d - \lambda_1(x+c) = 0$.

L'équation de la droite S_1 S_2 est de la forme $\Delta + \mu \Delta' = 0$. En exprimant que cette droite passe par S_2 nous trouvons

$$\mu = \frac{\lambda_1 c - d}{\lambda_1 c + d} .$$

L'équation de la droite S_1 S_3 , conjuguée de S_1 S_2 par rapport à Δ et Δ' est $\Delta - \mu \Delta' = 0$, ou, réductions faites,

$$\lambda_1^2 cx + d \cdot y = -(\lambda_1^2 c^2 - d^2)$$
.

Grâce au choix fait pour Ox et Oy, il nous suffit pour obtenir l'équation de $S_2 S_3$, de changer les signes de c et d et de remplacer λ_1 par λ_2 , ce qui donne

$$\lambda_2^2 cx + d \cdot y = \lambda_2^2 c^2 - d^2 \cdot$$

Les coordonnées ξ et η du point S_3 sont les racines du système formé par ces deux équations. On a

$$\xi = - \, c \, rac{\lambda_1^2 \, + \, \lambda_2^2}{\lambda_1^2 \, - \, \lambda_2^2} \, + \, 2 \, rac{d^2}{c} \cdot rac{1}{\lambda_1^2 \, - \, \lambda_2^2} \quad {
m et} \quad au_i = - \, d \, rac{\lambda_1^2 \, + \, \lambda_2^2}{\lambda_1^2 \, - \, \lambda_2^2} \, + \, 2 \, rac{c^2}{d} \, rac{\lambda_1^2 \, \, \lambda_2^2}{\lambda_1^2 \, - \, \lambda_2^2} \; .$$

Ainsi ξ est la distance du foyer extérieur de l'ovale au milieu 0 de F_1F_2 . Soient α_1 et α_2 les demi-angles au sommet des deux cônes S_1 et S_2 ; supposons $\alpha_2 > \alpha_1$, alors $\cot \alpha_2 < \cot \alpha_1$ ou $\lambda_2 < \lambda_1$. Comme $(\lambda_1^2 - \lambda_2^2)$ est positif, ξ a le signe de $-c^2(\lambda_1^2 + \lambda_2^2) + 2d^2$, c'est-à-dire de

$$2\frac{d^2}{c^2} - \cot^2 \alpha_1 - \cot^2 \alpha_2 .$$

Mais d:c est la cotangente de l'angle aigu β que fait la droite S_1S_2 avec la verticale et, puisque la portion S_1S_2 de cette droite est intérieure aux deux cônes S_1 et S_2 , on a $\beta < \alpha_1 < \alpha_2$ et, par suite, cot $\beta > \cot \alpha_1 > \cot \alpha_2$, et ξ est positif.

Formes des deux ovales conjuguées. — Une droite ne peut couper l'ensemble des deux ovales conjuguées en plus de quatre points, et, par suite, l'ovale intérieure en plus de deux points, l'ovale intérieure est donc toujours une courbe convexe; elle a une forme ovale au sens généralement attribué à ce mot. Le paramètre de la parabole dépend de la position de S_2 et des valeurs des demi-angles au sommet des deux cônes S_1 et S_2 . Sur la figure le sommet de la parabole se trouve entre S_1 et S_2 : l'ovale extérieure, elle aussi est une courbe convexe. Mais si le sommet de la parabole vient se placer au-dessous de la génératrice $B_1'B_2'$, la projection horizontale de l'intersection des cônes tournera en son sommet B_2 sa concavité vers l'extérieur. Si le sommet de la parabole est en B_1' , B_2 sera un point méplat.

Nous verrons plus loin comment il est possible, d'après l'équation de l'ovale, de se rendre compte de sa forme.

Cas particuliers. — Si S_1 s'éloigne à l'infini dans la direction verticale, l'intersection est symétrique par rapport au plan horizontal mené par S_2 et le sommet S_3 est dans ce plan. L'axe de la parabole passe par S_2 et S_3 . L'ovale intérieure et l'ovale extérieure se confondent en une même circonférence de centre F_1 ; F_2 et F_3 sont conjugués par rapport à cette circonférence double.

Si, S_2 se déplaçant à l'intérieur du cône, S_1 vient sur l'axe de ce cône, l'intersection se compose de deux circonférences horizontales et S_3 s'éloigne à l'infini dans la direction horizontale. La parabole se décompose en deux droites parallèles; l'ovale intérieure et l'ovale extérieure deviennent deux circonférences concentriques ayant pour centres les deux foyers F_1 et F_2 confondus.

Si S_2 est sur le cône S_1 , S_3 coïncide avec S_2 . L'intersection des cônes est une quartique gauche présentant un point double en S_2 : sa projection sur le plan V est une parabole à axe horizontal tangente en S_2 à la droite S_1 S_2 ; sa projection horizontale est un limaçon de Pascal.

Si deux des cônes ont la même ouverture, le sommet du troisième s'éloigne à l'infini: la courbe d'intersection est plane. Sa projection horizontale est une ellipse de foyers F_1 et F_2

si les cônes S_1 et S_2 sont égaux, une hyperbole de foyers F_2 et F_3 si les cônes S_2 et S_3 sont égaux et de foyers F_3 et F_1 si les cônes S_3 et S_1 sont égaux.

2. — Les équations bipolaires et tripolaire de l'ovale.

Soient P et P' les projections sur le plan horizontal et sur le plan V d'un point quelconque de la courbe d'intersection des trois cônes, et π , S', S', S', les projections de ce point et des trois sommets sur un axe vertical pour lequel nous choisissons un sens positif XX'. Soient ν_1 , ν_2 , ν_3 les segments $\pi S'_1$, πS_2 , $\pi S'_3$ et h_1 , h_2 , h_3 les segments $S'_2S'_3$, $S'_3S'_3$, $S'_1S'_2$. La relation de Chasles, appliquée successivement aux points S'_1 , S'_1 , S'_1 , T'_2 , T'_3 , T'_4 , T'_5 ,

$$h_1 + h_2 + h_3 = 0 (1)$$

$$v_1 + h_3 - v_2 = 0 (2)$$

$$v_2 + h_1 - v_3 = 0 (3)$$

$$v_3 + h_2 - v_1 = 0 . (4)$$

Multiplions respectivement (2) et (3) par h_1 et par (— h_3) et ajoutons membre à membre; il vient

$$v_1 h_1 - v_2 (h_1 + h_3) + v_3 h_3 = 0$$

ou, en vertu de (1)

$$v_1 h_1 + v_2 h_2 + v_3 h_3 = 0 (5)$$

Soient ρ_1 , ρ_2 , ρ_3 les distances du point Paux trois foyers F_1 , F_2 , F_3 et λ_1 , λ_2 , λ_3 les valeurs au signe près des cotangentes des demiangles au sommet des trois cônes. Convenons de donner à λ_1 , λ_2 , λ_3 les signes respectifs de ν_1 , ν_2 , ν_3 , nous aurons

$$v_1 \equiv \lambda_1 \, \rho_1 \qquad v_2 \equiv \lambda_2 \, \rho_2 \qquad v_3 \equiv \lambda_3 \, \rho_3$$

 ρ_1 , ρ_2 , ρ_3 étant toujours positifs.

$$v_1(v_3-v_2)+v_2(v_1-v_3)+v_3(v_2-v_1)=0$$

Etant données trois segments de même origine portés sur un même axe, la somme algébrique des produits de chacun d'eux par la différence des deux autres est nulle, puisque, dans cette somme, chaque produit de deux segments intervient deux fois et avec des signes contraires.

¹ En exprimant h_1 , h_2 , h_3 en fonction de v_1 , v_2 , v_3 , on a

En y remplaçant ρ_1 , ρ_2 , ρ_3 par ces valeurs, les relations (2), (3), (4) et (5) deviennent

$$\begin{split} \lambda_1 \rho_1 - \lambda_2 \rho_2 + h_3 &= 0 \ , \quad \lambda_2 \rho_2 - \lambda_3 \rho_3 + h_1 = 0 \ , \quad \lambda_3 \rho_3 - \lambda_1 \rho_1 + h_2 = 0 \ , \\ h_1 \lambda_1 \rho_1 + h_2 \lambda_2 \rho_2 + h_3 \lambda_3 \rho_3 &= 0 \ . \end{split}$$

Ce sont les équations bipolaires et tripolaire de l'ovale de Descartes, rapportées à ses foyers.

Si nous remarquons que $|\lambda_1| > |\lambda_2| > |\lambda_3|$, nous voyons que l'équation bipolaire étant rapportée aux deux foyers intérieurs F_1 et F_2 , le foyer extérieur F_3 est du côté du foyer intérieur pour lequel le coefficient du rayon vecteur a la plus petite valeur absolue et que l'équation bipolaire étant rapportée à un foyer intérieur et au foyer extérieur, le rayon vecteur correspondant à ce dernier est affecté du coefficient le plus petit en valeur absolue.

Sur une équation bipolaire $\lambda \rho + \lambda' \rho' - k = 0$, il est facile de voir si les deux foyers auxquels elle est rapportée sont ou non de même nature. Remplaçons-y successivement ρ et ρ' par les rayons vecteurs (0, 2b) et (2b, 0) qui correspondent aux deux foyers: si $2b\lambda' - k$ et $2b\lambda - k$ ont le même signe les deux foyers sont intérieurs; dans le cas contraire, un des deux foyers est intérieur, l'autre est extérieur.

Nous avons (fig. 1) $h_1 < 0$, $h_2 > 0$, $h_3 < 0$ et pour l'ovale intérieure $\lambda_1 > 0$, $\lambda_2 < 0$ $\lambda_3 < 0$; pour l'ovale extérieure, $\lambda_1 > 0$ $\lambda_2 > 0$ $\lambda_3 > 0$.

Si nous désignons par k, λ et λ' des quantités essentiellement positives, et si nous supposons $\lambda' > \lambda$, le tableau suivant nous indique les formes que prennent les équations des deux ovales conjuguées suivant les foyers auxquelles elles sont rapportées.

Foyers	Ovale intérieure	Ovale extérieure
$\mathbf{F_1}\mathbf{F_2}$	$\lambda \rho + \lambda' \rho' = k$	$\lambda' \wp' - \lambda \wp = k$
$F_2 F_3$	$\lambda \varrho - \lambda' \varrho' = k$	$\lambda' \rho' - \lambda \rho = k$
F_3F_1	$\lambda \rho + \lambda' \rho' = k$	$\lambda'\varrho' - \lambda\varrho = k .$

Ce tableau montre également comment on passe d'une équation de l'ovale à celle de l'ovale conjuguée rapportée aux deux mêmes foyers.

Etant donnée une équation bipolaire, quand on a calculé la position du troisième foyer, on peut calculer les h.

Connaissant la position de deux foyers, il est aisé de trouver la position des sommets. Désignons par a_j (f étant égal à 1, 2 ou 3) a_j' , b_j , b_j' les distances respectives du foyer F_j aux sommets A_1 , A_2 , B_1 , B_2 des deux ovales conjuguées, et supposons, par exemple, l'ovale donnée par l'équation bipolaire $\lambda_1 \rho_1 - \lambda_2 \rho_2 + h_3 = 0$. Exprimant que le sommet A_1 est sur la courbe nous avons $\lambda_1 a_1 - \lambda_2 a_2 + h_3 = 0$. Si nous appelons 2b la distance des deux foyers $F_1 F_2$, $a_2 = a_1 + 2b$ et la relation précédente devient $\lambda_1 a_1 - \lambda_2 (a_1 + 2b) - h_3 = 0$, d'où nous pouvons tirer a_1 .

D'autre part,

$$\lambda_2 \, a_2 \, - \, \lambda_3 \, a_3 \, = \, \lambda_2 \, a_2' \, - \, \lambda_3 \, a_3' \, = \, - \, h_1 \ .$$

D'où $\lambda_3(a_3-a_3)=\lambda_2(a_2-a_2)$, relation qui nous fait connaître λ_3 . On pourrait, connaissant h_3 et h_1 avoir h_2 par la relation $h_1+h_2+h_3=0$. Ainsi une des équations bipolaires d'une ovale étant donnée, nous pouvons trouver les deux autres équations bipolaires et l'équation tripolaire. Si l'ovale est donnée par ses trois foyers et son équation tripolaire, nous pouvons déterminer ses deux sommets et trouver ses équations bipolaires.

D'après le tableau qui précède, l'équation $\lambda \rho - \lambda' \rho' = k$ représente toujours une ovale intérieure rapportée aux foyers F_2 et F_3 . Les autres formes d'équations bipolaires indiquent simplement que l'ovale est intérieure ou extérieure. Pour savoir à quels foyers elle est rapportée, il convient de chercher la position de ses sommets et celle du point milieu 0 de l'intervalle qui les sépare: la disposition des deux foyers connus par rapport à 0, fait voir si ce sont F_1 , F_2 ou F_3 .

3. — L'ovale courbe anallagmatique.

Si on prend pour pôle un quelconque des trois foyers et pour axe la droite $F_1F_2F_3$, l'équation de l'ovale en coordonnées polaires ρ et θ se présente sous la forme $\rho^2 + P\rho + Q = 0$, P étant une fonction linéaire de cos θ et Q une constante. La transformation par rayons vecteurs réciproques autour du pôle

 $\rho\sigma = Q$ conduit à l'équation $Q + P\sigma + \frac{Q}{Q}\sigma^2 = 0$. L'ovale est donc une courbe synallagmatique par rapport à chacun de ses foyers pris pour origine ¹.

Dans la figure 1, le quadrilatère inscriptible $A_1'A_2'B_2'B_1'$ nous donne les relations

$$S_1 A_1' . S_1 B_1' = S_1 A_2' . S_1 B_2' S_2 A_1' . S_2 B_2' = S_2 A_2' . S_2 B_1'$$
 $S_3 A_1' . S_3 A_2' = S_3 B_1' . S_3 B_2' .$

Les deux points de la quartique gauche qui sont sur une même génératrice du cône S_1 correspondent l'un à l'ovale intérieure, l'autre à l'ovale extérieure et sont d'un même côté de S_1 ; pour le cône S_2 les deux points correspondent l'un à l'ovale intérieure, l'autre à l'ovale extérieure et sont de part et d'autre de S_2 ; pour le cône S_3 , les deux points correspondent tous deux soit à l'ovale intérieure, soit à l'ovale extérieure et sont d'un même côté de S_3 . Chacune des ovales conjuguées est à elle-même son inverse par rapport à F_3 , la puissance d'inversion m_3^2 étant positive (cercle d'inversion réel passant par les points de contact des tangentes menées du foyer extérieur aux deux branches de la courbe. On a $m_3^2 = a_3$. $a_3' = b_3$. b_3' ; a_3 , a_3' , b_3 et b_3' conservant les significations indiquées plus haut). Les tangentes menées du foyer extérieur à deux ovales conjuguées sont égales.

Les deux ovales conjuguées sont inverses l'une de l'autre par rapport à F_1 et F_2 : la puissance d'inversion m_1^2 relative à F_1 est positive (cercle d'inversion réel passant entre les deux courbes); la puissance d'inversion — m_2^2 relative à F_2 étant négative (cercle d'inversion imaginaire).

On a
$$m_1^2 = a_1 b_1 = a_1' b_1' \qquad \text{et} \qquad m_2^2 = a_2 b_2' = a_2' b_2 \ .$$

On trouverait aussi ces valeurs de m_1^2 , m_2^2 , m_3^2 en calculant le terme constant Q de l'équation monopolaire qui correspond à chacun des trois foyers.

¹ L'ovale étant symétrique par rapport à l'axe F₁F₂F₃ (puisque le plan V est un plan de symétrie pour les trois cônes), et la symétrie par rapport à un axe pouvant être considérée comme une inversion dont le centre s'est éloigné à l'infini dans une direction perpendiculaire à l'axe de symétrie, l'ovale possède quatre origines d'anallagmatisme comme toute quartique bicirculaire.

Partons du sommet A_1 : l'inversion m_1^2 nous mène en B_1 , puis l'inversion — m_2^2 nous mène en A_2 , et enfin l'inversion m_3^2 nous ramène en A_1 . Donc $m_1^2 ext{.} m_2^2 ext{.} m_3^2 = 1$.

Le foyer F_3 a même puissance par rapport aux deux cercles de diamètre A_1A_2 et B_1B_2 : il est donc sur leur axe radical. Puisque, connaissant l'équation bipolaire $\lambda_1\,\varepsilon_1 - \lambda_2\,\varepsilon_2 + h_3 = 0$ d'une ovale, on en déduit facilement l'équation de l'ovale conjuguée et la position des sommets de cette dernière, nous obtenons ainsi une seconde construction du foyer extérieur F_3 . On voit sans peine que F_1 et F_2 pourraient aussi se trouver par une construction d'axe radical: F_1 est sur l'axe radical des deux cercles décrits sur A_1B_1 et A_2B_2 comme diamètres, et la corde commune aux deux cercles décrits sur A_1B_1 et A_2B_2 comme diamètres passe par F_2 .

Cercle tangent à l'ovale et passant par deux points donnés dont un de ses foyers. — L'inversion anallagmatique autour du foyer par lequel doit passer le cercle à construire transforme ce cercle en une droite tangente à l'ovale et passant par le point inverse de l'autre point donné. Le point inverse de son point de contact avec l'ovale est le point où le cercle à construire touche l'ovale. En particulier, le cercle passant par F_1 et F_2 et tangent à l'ovale se déduit par inversion autour du foyer F_1 , par exemple, de la tangente à l'ovale conjuguée qui passe par l'inverse de F_2 .

4. — Sécantes passant par un foyer.

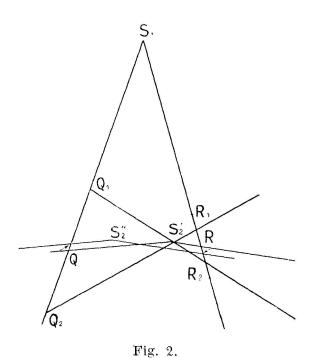
D'une propriété bien connue de la transformation par rayons vecteurs réciproques, il résulte immédiatement que: 1° toute sécante à l'ovale menée par F_1 est bissectrice des directions des tangentes aux deux points situés d'un même côté de l'axe où elle coupe les deux ovales conjuguées; 2° toute sécante menée par F_2 est bissectrice des directions des tangentes aux deux points situés de part et d'autre de l'axe où elle coupe ces deux ovales; 3° toute sécante menée par F_3 est bissectrice des directions des tangentes aux deux points où elle coupe chacune des ovales intérieure et extérieure.

Si entre l'équation de l'ovale en coordonnées polaires rapportée à un de ses foyers et l'équation d'une droite quelconque de son plan

$$\rho(\rho\cos\theta + \eta\sin\theta) = r$$

on élimine θ , on obtient une équation du quatrième degré en ρ dont les quatre racines sont les distances des foyers aux points d'intersection de la droite et de la courbe. Dans cette équation le quotient des coefficients de ρ^3 et de ρ^4 est une constante: donc la somme des quatre rayons vecteurs menés d'un foyer aux points d'intersection de la courbe avec une droite quelconque est constante. Nous pouvons le voir par des considérations géométriques simples dans le cas où la sécante passe par le foyer.

Par l'axe de l'un des cônes, S_1 par exemple, menons un plan vertical quelconque V'. L'intersection de V' avec le cône S_2 est une hyperbole à axe réel vertical. Le centre S_2' de cette hyperbole est toujours dans le plan horizontal qui passe par S_2 , et l'angle de ses asymptotes est égal à l'angle au sommet du cône S_2 (fig. 2).



L'intersection de V' avec le cône S₁ se compose de deux génératrices de ce cône. Soient Q₁, Q₂, R₁, R₂ les points d'intersection de ces deux génératrices avec l'hyperbole, et S₂Q, S₂R les diamètres conjugués des cordes Q₁ Q₂ et R₁ R₂. Ces diamètres sont comme les cordes correspondantes également inclinés sur la verticale. Nous avons

$$S_1\,Q_1\,+\,S_1\,Q_2\,=\,2S_1\,Q \qquad et \qquad S_1\,R_1\,+\,S_1\,R_2\,=\,2S_1\,R \ . \label{eq:s1}$$

Faisons tourner le plan V' autour de l'axe du cône S_1 : l'angle des deux génératrices passant par S_1 ne change pas, S_2' se déplace dans V' le long d'une droite horizontale et vient en S_2'' . L'angle des asymptotes ne change pas et par suite le système des deux diamètres conjugués subit une translation horizontale: les déplacements de Q et R sur les génératrices de S_1 sont égaux et de sens contraire et la somme $S_1Q + S_1R$ reste constante, quelle que soit l'orientation de V'. Projetons sur la trace horizontale de V': nous voyons que la somme des distances d'un foyer aux points d'intersection de la courbe avec une sécante quelconque passant par ce foyer est constante.

Si nous prenons comme sécante l'axe F_1F_2 , nous voyons de plus que la constante est la même pour les foyers F_1 et F_2 .

Les trois points F₁, F₂, F₃. auxquels leur propriété optique a fait donner le nom de foyers, sont aussi des foyers répondant à la définition de Plücker: le calcul prouve que ce sont les points d'intersection de tangentes menées à l'ovale par les points cycliques du plan.

L'ovale possède aussi un foyer singulier: elle passe par les points cycliques du plan et a des asymptotes qui la touchent en ces points.

Si nous supposons que S_2 se déplace sur la verticale F_2S_2 (fig. 1), c'est-à-dire si nous faisons varier h_3 en laissant fixes λ_1 et λ_2 , nous obtenons une famille d'ovales définies par la relation $\lambda_1\rho_1 + \lambda_2\rho_2 = -h_3$, où h_3 est un paramètre variable. Dans l'équation en coordonnées cartésiennes correspondante, les termes du quatrième et du troisième degré sont indépendants de h_3 , et, par suite, toutes ces ovales ont les mêmes asymptotes ¹. Il nous

¹ L'équation cartésienne de l'ovale de Descartes ne diffère que par une constante de celle du limaçon qui fait partie de la famille. L'ovale est le lieu des points d'égale puissance par rapport au limaçon.

suffira donc d'étudier ces asymptotes dans le cas particulier où S_2 est sur le cône S_1 , où l'ovale devient un limaçon de Pascal. En regardant cette courbe comme une conchoïde de cercle, et en prenant comme pôle son point double et comme axe polaire son axe de symétrie, on écrit immédiatement son équation en coordonnées polaires

$$\rho = 2r\cos\theta + l$$
ou
$$\rho^2 - 2r\rho\cos\theta + l\rho = 0$$

Passant aux coordonnées cartésiennes rectangulaires, le pôle étant pris pour origine et l'axe polaire pour axe des x, on a

$$(x^2 + y^2 - 2rx)^2 = l^2(x^2 + y^2)$$
.

Les points cycliques sont points doubles: les tangentes aux points cycliques y rencontrent la courbe en trois points confondus. Soit $y = ix + \delta$ une de ces asymptotes; l'équation aux abscisses des points de rencontre de cette droite avec la courbe doit avoir trois racines infinies. En portant la valeur $y = ix + \delta$ dans

l'équation de la courbe, et en exprimant que le coefficient de x^2 est nul, nous obtenons la relation $(\delta + ri)^2 = 0$. Les points cycliques sont des points de rebroussement de l'ovale, et les asymptotes se coupent en un point réel (x = r, y = 0) au centre du cercle de base du limaçon. Ce point est le foyer singulier commun aux ovales de la famille $\lambda_1 c_1 + \lambda_2 \rho_2 = -h_3^{-1}$.

Calculons la valeur du rayon r en fonction de la distance 2c des deux foyers et des coefficients λ_1 et λ_2 . Nous avons (fig. 3), en appelant C l'extrémité du diamètre du cercle

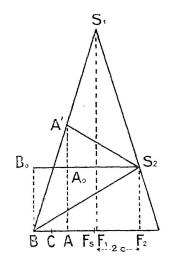


Fig. 3.

de base du limaçon $F_2C = 2r$. D'après la définition de la conchoïde, ce cercle passe à égale distance de B et de A, points du limaçon situés sur son axe. On a $2 F_2C = F_2A + F_2B$.

¹ Si nous supposons l=2r, nous n'avons plus affaire à une ovale de Descartes, mais à une *cardioïde*. Le centre du cercle de base de la cardioïde est un foyer singulier.

D'autre part,

$$\begin{split} \mathbf{A}_0 \mathbf{A}' &= \lambda_2 \cdot \mathbf{F}_2 \mathbf{A} = \lambda_1 (4c - \mathbf{F}_2 \mathbf{A}) & \text{d'où} & \mathbf{F}_2 \mathbf{A} = \frac{4 \, \lambda_1 c}{\lambda_1 + \lambda_2} \;, \\ \mathbf{B}_0 \mathbf{B} &= \lambda_2 \cdot \mathbf{F}_2 \mathbf{B} = \lambda_1 (\mathbf{F}_2 \mathbf{B} - 4c) & \text{d'où} & \mathbf{F}_2 \mathbf{B} = \frac{4 \, \lambda_1 c}{\lambda_1 - \lambda_2} \;. \end{split}$$

Par suite

$$r = \frac{F_2C}{2} = \frac{F_2A + F_2B}{4} = \lambda_1 c \left(\frac{1}{\lambda_1 + \lambda_2} + \frac{1}{\lambda_1 - \lambda_2} \right) = \frac{2\lambda_1^2 c}{\lambda_1^2 - \lambda_2^2}.$$

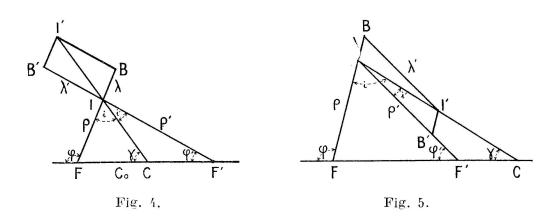
Désignons par F_s le foyer singulier; ses distances aux trois foyers ordinaires sont 1

$$\mathbf{F}_{s}\,\mathbf{F}_{1} = rac{2\,\lambda_{2}^{2}\,c}{\lambda_{1}^{2}\,-\,\lambda_{2}^{2}}\,, \qquad \mathbf{F}_{s}\,\mathbf{F}_{2} = rac{2\,\lambda_{1}^{2}\,c}{\lambda_{1}^{2}\,-\,\lambda_{2}^{2}}\,, \qquad \mathbf{F}_{s}\,\mathbf{F}_{3} \, \equiv \, 2\,rac{d^{2}}{c}\,\,\cdot\,rac{1}{\lambda_{1}^{2}\,-\,\lambda_{2}^{2}}\,\,.$$

 F_s est extérieur à l'intervalle F_1F_2 et placé du côté de F_1 .

II. — NORMALE A L'OVALE.

L'ovale étant donnée par l'équation $\lambda \rho + \lambda' \rho' = h$ rapportée à deux foyers F et F', nous prenons sur la courbe un point I,



nous portons sur les rayons vecteurs FI et F'I des segments $IB = \lambda$ et $IB' = \lambda'$, et nous complétons le parallélogramme BIB'I' (fig. 4 et 5): sa diagonale II' est la normale à l'ovale.

¹ En prenant F_s pour origine, l'équation cartésienne de l'ovale prend une forme où F_sF_1 , F_sF_2 et F_sF_3 interviennent de façon symétrique, se prêtant de façon commode à l'étude de la courbe.

La normale rencontre l'axe FF' en un point C situé entre F et F' si λ et λ' sont de même signe (fig. 4) et en dehors de l'intervalle FF' si λ et λ' sont de signe contraire (fig. 5). Le tableau des équations bipolaires montre que pour l'ovale intérieure, la normale passe entre F_1 et F_2 et que pour l'ovale extérieure, elle rencontre l'axe en des points extérieurs à l'intervalle F_1F_2 .

Soient i, i' et γ les angles que fait la normale avec les rayons vecteurs et avec l'axe FF'. Les deux triangles CFI et CF'I nous donnent

$$\frac{\mathrm{CF}}{\mathrm{\rho}} = \frac{\sin i}{\sin \gamma} \quad \text{et} \quad \frac{\mathrm{CF'}}{\mathrm{\rho'}} = \frac{\sin i'}{\sin \gamma} \; .$$

D'où

$$\frac{\mathrm{CF}}{\mathrm{CF'}} = \frac{\sin i}{\sin i'} \frac{\rho}{\rho'} \ .$$

Dans le triangle IBI'

$$\frac{\sin i}{\sin i'} = \frac{|\lambda'|}{|\lambda|} .$$

Donc

$$\frac{CF}{CF'} = \frac{\mid \lambda' \mid}{\mid \lambda \mid} \cdot \frac{\rho}{\rho'} \ . \label{eq:cf}$$

Le rapport des segments déterminés sur FF' par la normale à l'ovale est égal au produit du rapport des rayons vecteurs adjacents par un facteur constant.

Réciproquement, si la normale à une courbe détermine sur la droite passant par deux points fixes F et F' deux segments dont le rapport est égal au produit du rapport des deux rayons vecteurs adjacents par un facteur constant, la courbe est une ovale de Descartes. En effet, si

$$\frac{FC}{F'C} = \frac{|\lambda'|}{|\lambda|} \cdot \frac{\rho}{\rho'} ,$$

nous pouvons construire sur les directions des rayons vecteurs un parallélogramme de côtés égaux à λ et λ' .

Si nous connaissons le point d'intersection C d'une normale avec l'axe, nous connaîtrons le rapport $\rho:\rho'$ et, si nous écrivons l'équation de la courbe sous la forme

$$\left(\lambda \frac{\rho}{\rho'} + \lambda'\right) \rho' = h$$
,

nous pouvons déterminer ρ' et par suite ρ . Alors le point I est connu et CI est la normale cherchée.

Pour trouver l'angle γ de la normale avec l'axe, projetons le contour II'B sur l'axe focal et sur une droite qui lui soit perpendiculaire. Désignant par ϕ et ϕ' les angles des rayons vecteurs avec l'axe, nous obtenons

 $II'\cos\gamma - \lambda\cos\phi - \lambda'\cos\phi' = 0 \ , \quad II'\sin\gamma - \lambda\sin\phi - \lambda'\sin\phi' = 0 \ .$

D'où

$$tg\,\gamma = \frac{\lambda\,\sin\phi\,+\,\lambda'\,\sin\phi'}{\lambda\,\cos\phi\,+\,\lambda'\,\sin\phi'}\,.$$

III. POINTS OU L'OVALE PRÉSENTE UN MAXIMUM OU UN MINIMUM DE COURBURE.

Par raison de symétrie, les sommets situés sur l'axe correspondent à un maximum ou à un minimum de courbure.

1. Construction du centre de courbure relatif à un sommet. — Si le point I (fig. 4 et 5) se rapproche indéfiniment du sommet A, le point C, intersection de la normale en I avec FF'_1 , tend vers une position limite C_0 qui est le centre de courbure en A, puisque par raison de symétrie, ce centre de courbure doit se trouver sur FF' et on a

$$\frac{C_0 F}{C_0 F'} = \frac{|\lambda'|}{|\lambda|} \frac{C_0 A}{C_0 A'}.$$

Le point C_0 divisant FF' dans un rapport donné se détermine par une construction bien connue et cette construction est applicable à l'ellipse ($\lambda = \lambda'$) et à l'hyperbole ($\lambda = -\lambda'$).

2. Sommets de l'ovale intérieure. — Quand le point I se déplace sur une ovale intérieure à partir du sommet A_1 , voisin du foyer F_1 , ρ_1 augmente et l'équation de la courbe $\lambda_1 \rho_1 + \lambda_2 \rho_2 = -h_3$ montre que ρ_2 diminue. Alors $\rho_1 : \rho_2$ augmente, ainsi que $CF_1 : CF_2$

et le point C se rapproche de F_2 et de A_2 . La courbure passe donc par un maximum en A_1 . On verrait de même qu'elle passe par un maximum en A_2 .

3. Sommets de l'ovale extérieure. — Considérons l'ovale extérieure comme la transformée de l'ovale intérieure conjuguée en prenant F_1 pour centre d'inversion. Le cercle osculateur en A_1 devient par inversion le cercle osculateur en B_1 et comme le cercle osculateur en A_1 est intérieur à l'ovale intérieure, le cercle osculateur en B_1 est extérieur à l'ovale extérieure. D'autre part, le foyer F_1 est intérieur au cercle osculateur en A_1 , puisque les normales à l'ovale intérieure rencontrent l'axe entre les deux foyers: F_1 est donc intérieur au cercle osculateur en B_1 : en ce sommet la courbe tourne sa concavité vers F_1 et présente un minimum de courbure.

En ce qui concerne le sommet B₂, il faut distinguer plusieurs cas:

- α) Si le foyer F_1 est à l'intérieur du cercle osculateur en A_2 , il est aussi à l'intérieur du cercle osculateur en B_2 et, ce cercle étant extérieur à la courbe, l'ovale extérieure tourne en B_2 sa concavité vers F_1 et présente un minimum de courbure.
- β) Si le cercle osculateur en A_2 passe par F_1 , il se transforme en une droite, et l'ovale extérieure présente au sommet B_2 un point méplat.
- γ) Enfin, si le foyer F_1 est extérieur au cercle osculateur en A_2 , il est aussi extérieur au cercle osculateur en B_2 et, ce cercle étant extérieur à la courbe, l'ovale extérieure tourne en B_2 sa convexité vers F_1 et présente un maximum de courbure 2 .

² Dans ce dernier cas, le foyer F_1 est intérieur au cercle osculateur en A_1 et extérieur au cercle osculateur en A_2 . Il y a donc sur chacune des moitiés de l'ovale intérieure entre A_1 et A_2 un point tel que le cercle osculateur en ce point passe par F_1 , et le cercle osculateur au point correspondant de l'ovale extérieure est une droite: ce point homologue est un point d'inflorier

logue est un point d'inflexion.

¹ On peut obtenir le même résultat d'une façon plus classique, mais qui exige quelques calculs. Soit un cercle de rayon R tangent au sommet de l'ovale. Prenons pour axes de coordonnées l'axe et la tangente au sommet. Les coordonnées d'un point P du cercle sont $x=R(1-\cos \varphi)$ et $y=R\sin \varphi$. Dans x et y remplaçons $\cos \varphi$ et $\sin \varphi$ par leurs développements en série en fonction de φ et négligeons les puissances supérieures à la quatrième. Calculons F_1P et F_2P . Portant leurs valeurs dans le premier membre de l'équation de l'ovale, nous obtenons une expression de la forme $p\varphi^2 + q\varphi^4$. Ecrivons que le coefficient de φ^2 est nul: l'équation p=0 nous fait connaître le rayon R_0 du cercle osculateur. Le signe du coefficient de φ^4 , quand on y remplace R par R_0 , permet de savoir si la courbure au sommet envisagé est maxima ou minima.

Il y a entre les valeurs de ho_1 , ho_2 , i_1 , i_2 qui correspondent aux points d'inflexion une

4. Condition pour que l'ovale extérieure soit une courbe convexe.

— Nous avons vu plus haut comment la forme d'une équation bipolaire nous permet de reconnaître s'il s'agit d'une ovale intérieure ou d'une ovale extérieure. Cherchons la condition pour qu'une ovale extérieure soit une courbe convexe. Des considérations d'optique vont nous guider.

La relation $\lambda \sin i = |\lambda'| \sin i'$ nous montre que, si nous envisageons l'ovale comme la méridienne d'un dioptre pour lequel le premier et le second milieu ont des indices respectivement égaux à λ et λ' et si nous supposons un point lumineux placé en F dans le premier milieu, les rayons réfractés forment un faisceau homocentrique de centre F'. Supposons l'ovale rapportée à ses foyers intérieurs et prenons F_2 comme point-objet. Si l'ovale possède en B_2 un point méplat, les rayons lumineux venant de F_2 sont réfractés au voisinage de B_2 comme ils le seraient sous l'incidence normale par un dioptre plan, et on a $\lambda_2 F_1 B_1 = \lambda_1 F_2 B_2$ ou $\lambda_2 b_1 = \lambda_1 b_2'$. Si la courbe tourne en B_2 sa concavité vers F_2 , l'image F_1 se rapproche de B_2 , et on a $\lambda_2 b_2 < \lambda_1 b_1$: c'est la condition pour que l'ovale extérieure soit une courbe convexe.

2. — Points situés en dehors de l'axe et présentant un maximum ou un minimum de courbure.

Soit M un des points de contact de la circonférence menée par F_1 et F_2 et bitangente à l'ovale. En ce point M, l'angle F_1MF_2 , formé par les rayons vecteurs, passe par un maximum. Il est égal à (i_1+i_2) pour l'ovale intérieure (fig. 6) et à (i_1-i_2) pour l'ovale extérieure. Nous avons donc, en M, $d(i_1\pm i_2)=0$. D'autre part, de la relation

 $\lambda_1 \sin i_1 = \lambda_2 \sin i_2$, nous tirons $\lambda_1 \cos i_1 di_1 = \lambda_2 \cos i_2 di_2$.

$$\frac{\lambda_1\cos^2i_1}{\rho_1}=\frac{\lambda_2\cos^2i_2}{\rho_2}.$$

relation simple qu'on trouve aisément par des considérations d'optique. Dans le plan de la figure, les rayons lumineux émanés de F_2 sont réfractés en ces points par un dioptre ayant l'ovale pour méridienne comme ils le seraient par un dioptre plan osculateur. La relation qui détermine la position de la focale tangentielle est

Par suite $d(i_1 \pm i_2) = 0$ équivaut à

$$\left(1 \pm \frac{\lambda_1 \cos i_1}{\lambda_2 \cos i_2}\right) di_1 = 0.$$

Le facteur entre parenthèses ne pouvant s'annuler, $di_1 = 0$ et $di_2 = 0$; alors i_1 et i_2 passent en M par un maximum. Soit MJ la normale.

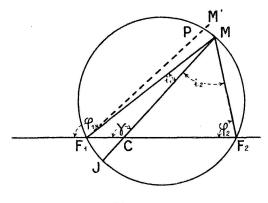


Fig. 6.

Prenons sur l'ovale un point M' infiniment voisin de M; la droite F_1 M' prolongée rencontre la circonférence au point P. Les angles inscrits F_1 PJ et F_1 MJ sont égaux. La normale M', faisant avec F_1 M' un angle égal à i_1 au second ordre près, puisque i_1 est un maximum, est parallèle à PJ et, puisque M'P est du second ordre, cette normale passe, au second ordre près, par le point J. J est par conséquent un point de rebroussement de la développée et en M la courbure de l'ovale passe par un minimum (pour l'ovale intérieure) par un maximum (pour l'ovale extérieure). Nous voyons donc que le cercle tangent en M ayant un rayon égal à la moitié du rayon de courbure en ce point passe par les deux foyers intérieurs. Entre les angles i_1 et i_2 , les rayons vecteurs ρ_1 et ρ_2 et le rayon de courbure R nous avons en M les relations

$$2R = \frac{\rho_1}{\cos i_1} = \frac{\rho_2}{\cos i_2} .$$

En tout point de l'ovale $\gamma = \varphi_1 - i_1 = \varphi_2 + i_2$ d'où

$$d\gamma = d\, {\bf \varphi_1} - d{\bf i_1} = d\, {\bf \varphi_2} + d{\bf i_2} \ . \label{eq:3.1}$$

En M on a $d\gamma = d\varphi_1 = d\varphi_2$.

IV. — APPLICATIONS A L'OPTIQUE.

1. — Ovales stigmatiques par rapport à deux points donnés.

On sait depuis Descartes que la méridienne d'un dioptre stigmatique pour deux points donnés P et P', situés dans deux milieux optiques d'indices respectifs 1 et n, est une ovale de Descartes dont ces points sont deux foyers 1.

On obtient l'équation de cette ovale en appliquant la loi du tautochronisme, c'est-à-dire en écrivant que le temps mis par la lumière pour aller dans le premier milieu du point P à un point I de l'ovale et du point I au point P' dans le second milieu est une constante. Les rayons vecteurs ρ et ρ' étant positifs, on affectera ρ du signe + ou du signe - suivant que P sera un point lumineux réel ou virtuel; ρ' sera affecté du signe + ou du signe - suivant que P' sera une image réelle ou virtuelle. Désignant par ρ_0 et ρ'_0 les distances de P et P' au point S où la méridienne rencontre l'axe PP', nous écrivons la loi du tautochronisme sous la forme

$$\pm \ \rho \ \pm \ n \ \rho' \ = \ \pm \ \rho_0 \ \pm \ n \ \rho_0' \ .$$

Les deux points P et P' étant donnés, il y a pour toute position de S une ovale stigmatique, qui suivant la distribution des points P, P' et S peut être une ovale intérieure ou une ovale extérieure. D'après ce qui a été dit plus haut (I § 2 et III, § 1), nous pourrons reconnaître sa nature, savoir à quels foyers elle est rapportée et dire si au point S elle présente un maximum ou un minimum de courbure. Des considérations très simples vont nous fournir directement ce dernier renseignement dans le cas où P et P' sont conjugués par rapport à un dioptre sphérique de sommet S.

Supposons que le dioptre sphérique tourne sa convexité du

¹ Un système optique est stigmatique pour deux points P et P' si tous les rayons incidents venant de P ont pour conjugués des rayons passant par P'. Le système est aplanétique quand il est stigmatique pour les points infiniment voisins de P et P', situés au voisinage de son axe dans deux plans perpendiculaires à l'axe.

côté d'où vient la lumière et que le second milieu est plus réfringent que le premier (n > 1). Nous avons à distinguer un certain nombre de cas.

- 1. P réel infiniment éloigné; P' coïncide avec le foyer-image. L'ovale se réduit à une ellipse, présentant en S un maximum de courbure.
- 2. P réel plus éloigné de S que le foyer objet; P' est réel (fig. 7). La condition du tautochronisme donne $\rho + n\rho' = k$.

$$\begin{array}{c|c}
\hline
P & S & O & P' \\
\hline
 & Fig. 7.
\end{array}$$

L'ovale, indiquée schématiquement en pointillé, est une ovale intérieure rapportée aux foyers F_3 et F_1 (voir le tableau, I § 2) et P' ne peut correspondre à F_3 puisque l'on a n > 1. Donc P correspond à F_3 et P' à F_1 . Il y a un maximum de courbure en S.

- 3. P réel placé au foyer-objet; P' est à l'infini. L'ovale devient une hyperbole. *Maximum* de courbure en S.
 - 4. P réel et P' virtuel (fig. 8), Nous avons

$$\rho - n \rho' = \rho_0 - n \rho_0' < 0$$

puisque $\rho_0' > \rho_0$ et n > 1. Il s'agit d'une ovale extérieure. Comme en S elle tourne sa convexité vers les foyers P et P', P' correspond à F_1 et P à F_2 . Il y a un maximum de courbure en S.

- 5. P et P' coïncident avec S. L'ovale se réduit à un point.
- 6. P virtuel placé entre le sommet S et le centre de courbure O du dioptre sphérique; P' est réel entre P et O (fig. 9). Nous avons

$$-\rho + n\rho' = -\rho_0 + n\rho'_0 > 0$$

$$S \setminus PP' O$$

Fig. 9

 $^{^{1}}$ P' ne peut jamais correspondre à $\mathrm{F_{3}},$ ni P à $\mathrm{F_{1}}$.

puisque $\rho_0' > \rho_0$ et n > 1. C'est l'équation d'une ovale extérieure. La courbe tournant en S sa concavité vers P et P', P' correspond à F_1 et P à F_2 . Il y a un minimum de courbure en S.

- 7. P et P' coïncident avec 0. L'ovale se réduit au cercle méridien du dioptre puisque les foyers F_1 et F_2 viennent en coïncidence.
- 8. P virtuel au-delà de 0 et en deçà du point stigmatique objet du dioptre (fig. 10).

Si P est virtuel et placé au-delà de 0, P' est réel et placé entre 0 et P. Nous avons

$$- \rho + n\rho' = - \rho_0 + n\rho'_0.$$

Quand P se déplace vers la droite à partir de 0, — $\rho_0 + n \rho_0'$ part de la valeur positive (n-1) SO et décroît pour s'annuler quand P atteint le point stigmatique objet. Nous reconnaissons l'équation d'une ovale extérieure. Il y a un minimum de courbure en S.

- 9. P virtuel placé au point stigmatique objet, P' au point stigmatique image. Nous avons $\rho + n \rho' = 0$. L'ovale se réduit au cercle méridien du dioptre sphérique.
- 10. P virtuel placé au-delà du point stigmatique objet; P' est entre 0 et P (fig. 11). Nous avons

$$-\; \rho \; + \; n \; \rho' \; = \; -\; \rho_0 \; + \; n \; \rho_0' \; < \; 0 \; \; . \label{eq:rho}$$

$$\begin{array}{c|cccc}
 & & & & & & & & & & \\
\hline
S & O & P' & P \\
\hline
Fig. 11.
\end{array}$$

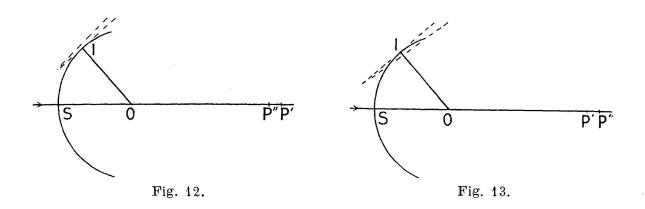
C'est l'équation d'une ovale intérieure rapportée aux foyers F_2 et F_3 : F_2 est en P', F_3 en P. Il y a un maximum de courbure en S.

On peut faire la même discussion si, n étant toujours plus grand que 1, le dioptre tourne sa concavité du côté d'où vient la lumière. Enfin, pour passer aux cas où on aurait n < 1, il suffirait d'appliquer le principe du retour inverse des rayons lumineux.

Ce mode de raisonnement s'applique aussi aux miroirs stigmatiques pour deux points donnés. Dans le cas de la réflexion (n = -1), l'ovale se réduit à une conique, dont la courbure aux sommets sur l'axe est toujours un maximum.

2. — Aberration du dioptre sphérique.

Pour les rayons centraux, l'action du dioptre sphérique est la même que celle du dioptre stigmatique ayant pour méridienne l'ovale dont le cercle osculateur en S coïncide avec le cercle 0. Si cette ovale présente en S un maximum de courbure (fig. 12), l'effet optique réalisé en chaque point I par la substitution du dioptre stigmatique au dioptre sphérique est celui que produirait en I l'adjonction au dioptre sphérique d'un prisme d'angle très petit à arête tournée vers l'axe. Ce prisme déviant les rayons vers sa base, nous en concluons que les rayons marginaux réfractés par le dioptre sphérique rencontrent l'axe en un point P'' plus rapproché du sommet S que le point P' où se croisent les rayons centraux. L'aberration est dite sous-corrigée. Si l'ovale présente en S un minimum de courbure (fig. 13), l'effet optique réalisé



par la substitution du dioptre sphérique au dioptre stigmatique est celui que produirait en I l'adjonction au dioptre stigmatique d'un petit prisme à arête tournée vers l'axe: nous en concluons que les rayons marginaux réfractés par le dioptre sphérique rencontrent l'axe en un point P'' plus éloigné de S que P'. L'aberration est dite surcorrigée ¹.

D'après ce qui a été dit au paragraphe précédent, l'aberration du dioptre sphérique convexe et convergent est surcorrigée quand le point lumineux objet P se trouve entre le sommet du dioptre et son centre de courbure; quand P est extérieur à cet intervalle, l'aberration est souscorrigée. L'aberration du miroir sphérique garde toujours le même sens, quelle que soit la position du point-objet sur l'axe: elle est toujours souscorrigée pour le miroir sphérique concave et surcorrigée pour le miroir sphérique convexe.

3. — Surface de l'onde réfractée de chemin optique nul dans le cas d'un dioptre sphérique et d'une onde incidente sphérique.

L'ovale de Descartes se rencontre encore quand on cherche la surface de l'onde réfractée de chemin optique nul donnée par un dioptre sphérique, le point-objet A étant à distance finie ².

$$\psi = \frac{n+1}{2n^2} i^2 \omega ,$$

 ω étant l'angle du rayon incident avec la droite joignant le point d'incidence au point stigmatique objet du dioptre sphérique. La déviation imprimée par ce primse d'angle ψ au rayon réfracté est

$$\delta = (n-1)\psi = \frac{n^2-1}{2n^2}i^2\omega$$
.

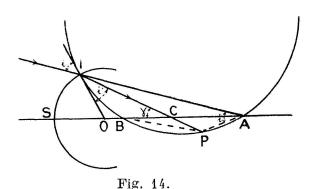
Le déplacement correspondant du point d'intersection de ce rayon avec l'axe est $\mathfrak{F}.$ IP': $\sin \varphi'$. Comme \mathfrak{F} est du troisième ordre infinitésimal et \mathfrak{P}' du premier ordre, nous pouvons remplacer $\sin \varphi'$ par la partie principale de \mathfrak{P}' , c'est-à-dire par h: SP', et IP' par SP' qui lui est égal à un infiniment petit du second ordre près. Donc

$$\mathbf{P'P''} = \delta \cdot \frac{\overline{\mathbf{SP'}}}{h} = \frac{n^2 - 1}{2n^2} \cdot \frac{\overline{\mathbf{SP'}}}{h} \cdot i^2 \omega .$$

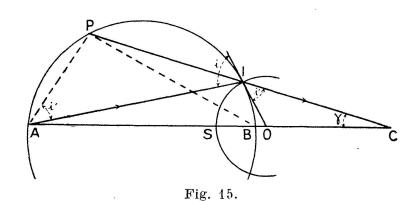
¹ On peut, en précisant ces indications, calculer la valeur de l'aberration. Prenons sur l'ovale et sur son cercle osculateur au sommet deux points voisins situés à une même distance infiniment petite h de l'axe. Menons en ces points les normales à l'ovale et au cercle. Les angles γ et γ_0 qu'elles font respectivement avec l'axe sont des infiniment petits; leur différence $\psi = |\gamma - \gamma_0|$ est l'angle du petit prisme additionnel. Pour avoir γ , nous utilisons l'expression de tg γ donnée dans la deuxième partie de cette note, en développant les sinus et cosinus en série jusqu'au troisième ordre inclusivement et tenant compte de la relation qui existe entre les distances de deux points conjugués au sommet d'un dioptre sphérique d'indice n et de rayon R. Nous trouvons

² Si le point-objet est à l'infini, la surface d'onde réfractée de chemin nul est rejetée à l'infini.

Soient O le centre de courbure du dioptre, AI un rayon incident quelconque, OI la normale (fig. 14 et 15). La circonférence menée



par A et I et tangente à OI coupe la droite OA en un point fixe B et OB.OA = OI². Soient P le second point où le rayon réfracté IP



coupe la circonférence AIB, et C l'intersection de OA et de IP. Le triangle AIP nous donne

$$\frac{\text{PI}}{\text{Al}} = \frac{\sin i'}{\sin i} = \frac{1}{n} .$$

Les temps employés par la lumière pour aller de A à I dans le premier milieu et de P à I dans le second milieu sont égaux. Le lieu du point P est la méridienne de la surface d'onde réfractée de chemin optique nul. Nous avons, dans les triangles PAC et PBC,

$$\frac{PA}{CA} = \frac{\sin \gamma}{\sin APC}$$
 et $\frac{PB}{CB} = \frac{\sin \gamma}{\sin BPC}$

D'où CB sin BPC PB

$$=rac{\sin \, \mathrm{BPC}}{\sin \, \mathrm{APC}} \cdot rac{\mathrm{PB}}{\mathrm{PA}}$$
 on $rac{\mathrm{CB}}{\mathrm{CA}} = rac{\sin \, \mathrm{BAI}}{\sin \, \mathrm{ABI}} \cdot rac{\mathrm{PB}}{\mathrm{PA}}$.

Le triangle AIB donne

$$\frac{\sin BAI}{\sin ABI} = \frac{BI}{AI} .$$

Donc

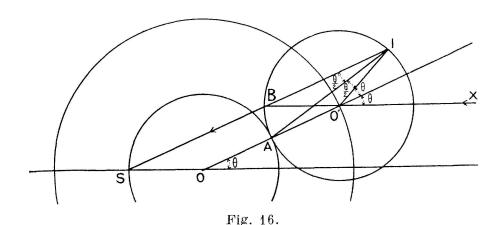
$$\frac{CB}{CA} = \frac{BI}{AI} \cdot \frac{PB}{PA} = \frac{SB}{SA} \cdot \frac{PB}{PA} \quad \text{ou} \quad \frac{CB}{CA} = \frac{R - R^2 : a}{a} \cdot \frac{PB}{PA}.$$

D'après ce que nous avons vu plus haut (II, § 1), PC est normale à une ovale de Descartes dont deux foyers sont A et B. Un des sommets est à une distance $\frac{SA}{n}$ du sommet du dioptre. La connaissance de la *nature* de cette ovale donnerait directement le *sens* de l'aberration pour le point A, mais le procédé artificiel indiqué au paragraphe précédent est plus simple.

4. — Condensateur cardioïde.

Nous signalerons encore ici, bien que l'ovale de Descartes n'y intervienne pas, une application catoptrique de la cardioïde.

La cardioïde peut être considérée comme engendrée par un point d'un cercle qui roule extérieurement sur un cercle égal.



Soient O le centre du cercle de base, O' une position quelconque du centre du cercle mobile, I le point correspondant de la cardioïde et S son point de rebroussement (fig. 16). Le trapèze

SIO'O est isocèle. La droite IA normale à la cardioïde est bissectrice de l'angle SIO'; O'B est parallèle à SO; OO' est bissectrice de l'angle formé par les droites O'I et BO' prolongée. Traçons le cercle ayant O pour centre et passant par O'.

Un rayon lumineux XO' parallèle à l'axe se réfléchit sur le cercle suivant O'I, puis sur la cardioïde suivant IS. L'association du miroir sphérique convexe, ayant pour centre le foyer singulier et de rayon égal au diamètre du cercle de base, à un miroir concave de révolution, ayant pour méridienne la cardioïde transforme un faisceau de rayons parallèles à l'axe en un faisceau homocentrique de sommet S. Ce système optique est stigmatique pour le point S et le point infiniment éloigné de son axe et, de plus, il est aplanétique, car le rayon incident et le rayon deux fois réfléchi se coupant sur la circonférence de cercle de centre S et de rayon SB = OO', la condition d'aplanétisme (condition des sinus) se trouve satisfaite. Ce système catoptrique est réalisé dans le condensateur cardioïde de Zeiss, qui s'emploie avec le microscope pour l'éclairage à fond noir et l'ultramicroscopie. Comme on n'utilise qu'une faible portion de la cardioïde au voisinage du point I, on la remplace par une portion de son cercle osculateur en I. Le rayon de courbure de ce cercle se détermine facilement. Le miroir concave employé est alors une zone empruntée à la surface d'un miroir torique.