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MÉLANGES ET CORRESPONDANCE

A propos d'une Note de M. Lainé
« Sur quelques classes particulières de polynômes ».

Dans sa Note intitulée « Sur quelques classes particulières de
polynômes » (Enseign. math. 25, 1926, p. 191-196; nous citerons ce travail
par E. M.), M. Lainé a étudié, entre autres, les polynômes de degré
n qui satisfont à l'équation différentielle

(x2 + 1 )y" -j- (2(1 — ci)x + b)yf — n\n + 1 — 2a) y — 0 (a)

(a b réels, b 0)

Nous allons montrer que ces polynômes se déduisent des polynômes
de Jacobi à l'aide d'une transformation simple, et que, de même, les
formules (8) et (9) (E. M., p. 194, 195) sont la conséquence d'une
identité trouvée par le même auteur (Untersuchungen über die
Differentialgleichung der hypergeometrischen Reihe, Grelles Journal für
reine und angewandte Mathematik 56, 1859; Gesammelte Werke
Bd. 6, p. 184 et suiv.). M. Lainé s'est borné au domaine réel.

Nous posons

n • 1 g.
~5 1

11 \
x — *2iÇ + i ; Ç — (b)

de sorte que l'équation différentielle a) devient une équation
différentielle hypergéométriqué dont les paramètres ont les valeurs

a 1 — 2a + n ; ß — — n ; y 1 — a — ~ (c)

Celle-ci, pourvu que y soit ^£0, — 1, — 2 a pour intégrale
particulière le polynome

F (a ß T, Ç) G„(l - 2a, 1 — a - y
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où F (a, /3, 7, I) désigne la série hypergéométrique de Gauss, et

Gn(p, g, I) le ft-ième polynome de Jacobi (pour la notation voir
Cou rant-Hilbert, Methoden der mathematischen Physik, Berlin
1925, p. 74-75). D'après Jacobi (loc. cit., équation (7)), on a

y (y -f 1) (y + n — l)F(a, ß, y, Ç)

ib - ib
2 7/1

- m- 8r(r^)'j= «<« - e>~(rh) (e)
d\n

où a, /3, 7 ont la signification c). En vertu de 6) et de la formule connue

1 1 + ix
arc _ 1g r—

on peut donner à l'expression e) la forme (/)

(*2 + l)ae~b arc lS * (x3+ l)"~a eb arc (^)" JJ (x)

11 -f- 1

montrent alors pour a —-—, que, en ce cas, ïin(x) prend la valeur

«-1
n — 1 ib

en utilisant la définition (8) de M. Lainé. Les équations e) et /) nous

montrent

constante

L <20"IX (- ,LSr1 - 7 + /l) n 'V* - (« - ')))
A=0 k—0

donc pour n 2v pair

v-l

II f + ,-(2i - <2v - 4)>] f - - <2v - '»]
k=0

H> + (2'" _ 1)2

m= I

et pour n 2v +1 impair

v-1 v

P2.+ 1 *U> + l'(2* - 2v))(6 - C2Ä- — 2v) fcJJ(Ä2 + 4„1S)

A=0

Ce sont les formules (9) de la Note de M. Lainé (E. M., p. 195).
Enfin, il résulte facilement des « Relationes inter functiones conti-

guas » de Gauss (Disquisitiones générales circa Seriem infinitam
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a. rj
1 + j-^x+ ; Commentationes societatis recent. Bd. 2,

1813; Werke Bd. 3, p. 125 et suiv.) 1 I. [2], [71, qu'on a

a(ß - a + 1)(T _ ß)F(a + 1, ß-1, y, Ç)

+ ß(ß - «- l)(r- a)F(a-l, ß + 1, Y< I)

+ (ß - «) [ï (ß + « - i) - 2*ß - (ß - « - (ß - « + 1) ?] F («• ß. 5) 0,

et quand on y pose

a 71 + p ; ß — 77 ; y q

on trouve pour les polynômes de Jacobi la formule de récurrence

(n + p) (u + q) (2n + p — 1) G/1 + 1 (p q, Ç)

+ 7/ (2/i + p + t) (// + p — <7) G/?_1 (p q f)

-f (2/7 + p) ((p — 1) q + 2 77(77 + p) — (2/z + p — 1) (2/7 + p + 1) f) G;i 0

En y introduisant les valeurs (b)) (c) et la notation Iïn(x) de M. Lainé,
on retrouve sa dernière formule (p. 196). On constate ainsi que cette
formule est une conséquence presque immédiate de relations classiques
bien connues.

Jena, 18.IV.1929.

Hermann Schmidt.
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