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MELANGES ET CORRESPONDANCE

A propos d’une Note de M. Lainé
« Sur quelques classes particuliéres de polynomes ».

Dans sa Note intitulée « Sur quelques classes particuliéres de poly-
nomes » (Enseign. math. 25, 1926, p. 191-196; nous citerons ce travail
par E. M.), M. LaiNE a étudié, entre autres, les polynomes de degré
n qui satisfont & I'équation différentielle

(2 + 1)y" + 2(1 —a)z + b)y —n(n +1 —2a)y =0 (a)
(a, b réels, b £ 0) .

Nous allons montrer que ces polynomes se déduisent des polynomes
de Jacosr a I’aide d’une transformation simple, et que, de méme, les
formules (8) et (9) (E. M., p. 194, 195) sont la conséquence d’une
identité trouvée par le méme auteur (Untersuchungen iiber die
Differentialglerchung der hypergeometrischen Reihe, Crelles Journal fiir
reine und angewandte Mathematik 56, 1859; Gesammelte Werke
Bd. 6, p. 184 et suiv.). M. Lainé s’est borné au domaine réel.

Nous posons
1 ;— 1 N (b)

x = — 2t + 1; £ —=

de sorte que l'équation différentielle @) devient une équation diffé-
rentielle hypergéométrique dont les parameétres ont les valeurs
th

¢« =1 — 2a + n ; f = —n; Y:—’l—a"“‘“;- (C)

4

Celle-ci, pourvu que y soit = 0, — 1, — 2 ..., a pour intégrale
particuliére le polynome
th

F(a,ﬁ,Y,E):Gn(l"—Qa,].—(I—T,E>, (d)

VS
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ou F(a, B, 7, £) désigne la série hypergéométrique de Gauss, et
Gn(p, q, &) le n -iéme polynome de Jacobi (pour la notation voir
COURANT-HILBERT Methoden der mathematischen Physik, Berlin
- 1925, p. 74-75). D’apres Jacobi (loc. cit., équation (7)), on a

y(y+1) . (v +n—1F(a, B, v, E)
—ib

: *

= =8 (7=) j;[<s<1—-e)>“—“<1—§—g>“] ()

ol a, 3, y ont lasignification ¢). En vertu de b) et de la formule connue

b
2

1 + iz
S ——

t ! 1
arc tog x = —
° 21

on peut donner a 'expression e) la forme (f)

"—l " b arct d'l barcto ——i n ’
(‘y) (22 4 1)%em 7087 C—{—,L(ac2 + )T elarels x — (T) I I (2)
X

n

en utilisant la définition (8) de M. Lainé. Les équations e) et f) nous

montrent alors pour ¢ = - j 1, que, en ce cas, I1,(x) prend la valeur
constante
n—1 _ n—1
- WﬂH(” - 1 _%” + ,;) =JT ¢ +iet—wm—m),
k=0 k=0

done pour n = 2y pair
H [6+ i@k —@v—1)][b— ik - @v—1)]
. j[]:(b2 + (2m — 1)?

et pour n = 2y + 1 impair

|v

v—1 v
Py = b [Jo+ice—2no—ice—20) = o L0+ im) .
k=0

m=\

Ce sont les formules (9) de la Note de M. Lainé (E. M., p. 195).
Enfin, il résulte facilement des « Relationes inter functiones conti-
guas » de Gauss (Disquisitiones generales circa seriem infinitam
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o.f

1+ 1.y
1813; Werke Bd. 3, p. 125 et suiv.) [1], [2], [7!, qu'on a

x 4 ... ; Commentationes socielatis Gottingensis recent. Bd. 2,

afff — o+ )y — B Fla+ 1, 5—1, 7.5
BB —a— )y — ) F(a—1, § 4+ 1,
(B [r(B+oa—1) —20f — (F—a—1)(5—a+ )5 F(x b1,

moo2
|-
=

et quand on y pose

a=n-+p; f = —n; Y= 4q,

on trouve pour les polynomes de Jacobi la formule de récurrence

(n+pln+q)2n+p—=1G, (. 7,8
+n@2Zn +p+Nn+p—q G, (p, ¢, %)
+ 2n +pl((p—Yq+2n(n+p)—2n+p—1)2n+p+ 15 G, =0.

En yintroduisant les valeurs (0), (c) et la notation 11, (x) de M. Lainé,
on retrouve sa derniére formule (p. 196). On constate ainsi que cette
formule est une conséquence presque immeédiate de relations classiques
bien connues.

Jena, 18.1V.1929.
Hermann ScuMIDT.
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