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APPLICATION DES NOTATIONS TENSORIELLES
DANS LE CALCUL VECTORIEL

PAR

A. Srovanorr (Sofia).

§ 1. Soient a et b deux vecteurs de composantes a, et by, (0u
bien am et b™m)1. On appelle produit intérieur de a et b 'invariant
@ b™. On appelle produit extérieur de a et b le tenseur syme-
trique gauche du IIe ordre de composantes ¢t = albt — akb'.

Dans I'espace euclidien a 3 dimensions ce tenseur n’a que
3 composantes indépendantes différentes de zéro; dans le calcul
vectoriel on le confond aveec un vecteur. On pourrait employer
pour ce vecteur la notation suivante

v — ¢ ad'bP ou bien = "Pa b,

m mnp ’

emnp désignant un symbole & 3 indices 2 défini de la fagon suivante:
emnp = 0, 81 deux des indices sont égaux;
Emnp = SgN (M, n, p), i les 3indices sont différents? (par consé-
quent mnp représente une permutation des nombres 1,2,3).
Remarque. On peut se servir également de la formule de
définition plus compliquée

1
Smnp = 5 (m —n)(n — p)(p — m) .

1 Comme dans le calcul vectoriel on opeére dans un espace euclidien & trois dimen-
sions et qu’on n’emploie que des coordonnées cartésiennes rectangulaires, il n’y a pas
lieu de faire de distinction entre les composantes covariantes et contrevariantes d’un
tenseur. -

2 C’est un cas particulier d’un tenseur plus général introduit par MM. Ricci et
Levi-Civita.

3 Je rappelle que sgn(m, n, p) = ==1, suivant que la permutation mnp a un

: ! oo g ) - - h s 2
nombre pair ou impair d’inversions. EX.: €, = ¢ppy = g5 = 1, Eiag = Eg9y = Egp = — 1.
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Par conséquent

ete. 3 —_ ¢ ==

Emnp - “mpn * mnp npm pmn

Calculons par exemple ¢;. On a ¢; = ¢ynp a” b? (cette somme
ne contient que deux termes différents de zéro) = 930203
+ &130a30% = a2 b® — a3 b2

§ 2. Plus tard, nous rencontrerons le symbole 8 4 indices
oS — mrs __ 1rs 58 le's | 831'.5‘
oSnp — Emnp ¢ _ E1np g €2np E3np ’

Propriéiés de g7 .

OI“S oS sr oS r

Spp — Spn = ~ Oonp

par conséquent g;“;:O, si n—=p ou r—=s.

Cherchons les composantes de g, non nulles. Donnons a
n et p deux valeurs distinctes choisies parmiles nombres1, 2, 3;
alors dans la somme précédente

irs 2rs 3rs
F"lnp ® + E2Ilp € + E3np ¢

il ne reste qu’un seul terme obtenu en donnant a m la troisiéme
valeur; on en déduit que r et s doivent avoir les mémes valeurs
que n et p; c’est-a-dire on doit avoir r = n, s = p, ou bien

= p, s = n. Dans le premier cas g}° est égal & 4- 1, dans le
second a — 1.

Application.  Considérons la somme g7° A (Ars_ dési-
gnant un tenseur a deux ou plusieurs 1nd1ces parml lesquels se
trouvent r et s). Effectuons la sommation indiquée; d’apres

les propriétés du symbole g, nous n’aurons que deux termes

oNP WP A — . X
OnpAnp. =+ onp pn — Anp.. Apn.. ’
par consequent
g”.p Ars.. — Anp.. '— Apn..

c’est-a-dire grs joue le réle de signe de substitution.
On vérifie sans peine que g* + g% + gt = 0, quels que
soient n, p, r, s.
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o . BB atambed
~§ 2. On voit immédiatement que &,,,&™" = 2gp, ¢ est-a
dire + 2 ou 0 suivant que s = p ou s = p.

§ 3. Nous pouvons maintenant aborder ’algébre vectorielle e.t
déduire avec une grande facilité les formules les plus compli-
quées. Par exemple

- - > > = naop m
axXb.c=v.c=yvy g™ = Smnp a bP ¢ = Enpm A b” ¢
al a® @b
n 4 1,3
= sgn(n, p, m)a" b’ " = | b b2 b
RIS BN
- - -> - -> e
aX (bx<ec)=axv = cupa" vl = epmp a? <P bpcg = gmn @" by
- > = > > -
= a"b,,c, — a*b,c,, = (@a.c)b— (a.b)c
- -> - - -»> = . rs z
(@< b) . (e d) == u.v = w9y = gpupa® bP™c, d; = gypa bP c,. d,
> - = > 9 > =
= a"bPc,d, — a*bPcpd, = (a.c)(b.d) — (a.d)(b.c)

@x<b)>x Exd =ux nrs g b ik cp dy,

_ rs pik — .pik v __ .Dik
- gpm & oa, [)s £ dlc — £ ap [)m ¢ dr’c € oa, [)p ¢ d/c

- -> -

- > ->
dyb— (b <c.d)a .

->
c.

e
= (a X

§4. Notations. Nous désignerons par a™(m = 1, 2, 3), les coor-
données d’'un point quelconque de l'espace, par A, F ou A™F
la dérivée par rapport a 2™ d’une fonction de point, c¢’est-a-dire

OF

AmF ou A™F = :
bxm

On a par définition, ¢ étant un scalaire, % un vecteur,
grad ¢ = le vecteur de composantes ¢, = A,

|

. —’ 3
div u = le scalaire A, u™,

-
- (u
rot u = le vecteur Rm) = emnp A" UP.
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Ceci posé, on obtient sans peine toutes les formules de I'analyse
vectorielle

divgrad 9 = A o" = A A™¢@ = A¢ (opérateur de Laplace)

— AV, P — RAD, —
rOt grad CP SII‘LIIPA ‘P I)’IIIPA A ? - 0
. g my m ) p oA D
divrot « = A == A '"”PA u — EmnpA A"uw? = 0 .
. = n p n p’S rs n
rot rot u — mnpA R — pmnA A U, = Onn.}. A u,

= A"Au, — A"A u, = A, (Aw,) — Au, = graddiv e — Au .

- - .-
div (pu) = A (pu™) = o, ™ + 9A, " = grado.u 4 ¢ divu

*
— n P n,p . n.p
rot (pu) = mnpA (pu”) = Enp P U T+ ‘P“nmpA u
- -
— grad 9 > u -+ ¢ rotu
- - -
‘o e Al AL Am n.p
div (l( ped V) = diva = A Y — A 8mnp % ¥
— P A7 m . p
— ¥ °mnp "+ u" mnpA ¥
() )
— mon __ m.p __ P - Vi
= pmnA u '“"PA ¢ v R u" R,
- -+ > -

—v.rotu — uw.rotv .
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