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TRANSFORMATIONS A VARIABLES SEPAREES 249

dratique y peuvent étre reliés a ceux de formes linéaires. On
peut, en effet, écrire, avec les notations des n° 14 et 15

LE®w =00 47, Yo = tMedudv (33)

mais si la conservation du systéme de formes @,, @,, entraine
celle de y, I'inverse n’a pas lieu; par suite, les invariants de y sont
des invariants du systéme @,, ®,, la réciproque n’étant générale-
ment pas vraie. On vérifiera ainsi les relations

o= (notations dune 14)

l=a,n=0, donc 2 = a,v = 8 (notations du n° 15), etec.

On peut d’ailleurs profiter de 'arbitraire de la décomposition
y = W, W, pourimposer aux formes linéaires @, et @, une relation
invariante assurant lidentité des systémes d’invariants de
d’une part, @, et @, d’autre part, en normant convenablement
ces derniéres formes sans porter atteinte a la généralité de X
ce qui est du reste possible de différentes facons, par exemple avec
¢ +¢=1,ouef =1.On est ainst ramené & I’étude d’un systéeme
particulier de formes linéaires.

En utilisant au contraire la relation y = ®2% +4- 4, (ou il y a
seulement deux choix possibles pour la forme %), on se rameéne
a I’étude d’un systéme formé par une forme @ générale et une
forme quadratique particuliére y,.

CAS D’UNE EQUATION DE PFAFF.

18. — Soit seulement & conserver 1’éguation
w=A(n, v)du+ Bu. v)de =0 (34)
ce qui astreint les coefficients & la condition

5A — AE 3B — By ]
A T TTB (35)

Ecartons d’abord les équations invariantes A — 0,B =0, et
posons

:,e( a,———-/):(;

vl e

A:e(l B:Cb C:
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. + 1) (n—2) . : . :
On devra prévoir bt )2(n ) invariants jusqu’a l'ordre n,

dont n — 1 nouveaux invariants d’ordre n, pour n > 2. Pour
les premiers ordres, écrivons

6¢c = & — 1/ 1V, 0]
0C,, = €& + & 8¢y = oyt — 1’ [IV. 1]

g Beyy = 2¢59E" + ;08" + & Bcgy = 200" + oy — 1"
( ey = ¢y (& + ) [IV, 2]

¢;1 est done invariant relatif de poids (— 1); si ¢;; 7% 0, posons

gte_, £C

(,'” 2 9 9

e (36)
et substituons a I’équation [IV, 0] et a la derniére équation
[IV, 2] les suivantes

Sh=F8 k= [1V, 21

Pour le troisieme ordre, nous avons & former quatre nouvelles
équations; nous en écrirons Six, en d ¢y, 0Cy3, 0Py, 0 Koy, 0 Kygs
dhy,, celles en dhy, et dk,; remplacant les équations [IV, 1]

s Otgg =+ - - . . .+ £V OCo ==« + .« . . L — 7 ,

? Shyy = R & + & T [TV, 3]
Okyy = k& ‘ Ohgy = oy
19. — Si les invariants relatifs k,, et hy, ne sont pas nuls, on

obtient les deux invariants du troisiéme ordre

a* =k, e f* = hy, e (37)

et les équations da* = 0, d3* = 0, pourront remplacer dans la
suite les équations en Jk,, et dhy, de sorte que I'on pourra
continuer comme au n° 6, par ’emploi régulier de paramétres
différentiels

S = loe™ S =fne" ' (38)

pour lesquels on devra cependant tenir compte des relations (36),
soit, entre h et k

/'11 - ku - e(thk) (39)
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Les quatre invariants obtenus comme parametres différentiels
de o* et B* ‘

*  _} * ) S ow* =k gy
¥ o= %yg h O* = (5108 ’ ‘P* = %g1€ 4’*—— (’Ole (}0)

ne sont pas distincts, car

* _ 2 e—(h+/f) — ¥k

P = "
0% — g* = 1 (41)

—lh+k % B*

0% = h,, e

Comme l'on a

| 3,8, = fu® — S 8,8, = e — 5

: (42)
| (3.5,)f = B*8,[ — a*3,f

on peut encore introduire
‘e f 8 43
sztv/ - /11 & (io)

Y*:S’ 0:g1‘8~g:0*+?*+2d*(1~* (41*)

wed
et prendre »*, v*, ¢* comme invariants distincts d’ordre 4

/. 1}
w* = 'S-ua* Y* = ‘Sltc'g "!)* - &v(j* : (~:00)

et pour lordre 5, on pourra choisir ¥ a*, S o*,3 %, 3] 5%,
Dans le cas général, les invariants «* et 3* du troisieme ordre
sont essentiels, y* étant défini par (44).

20. — Cas particuliers. — Soit d’abord B = 0, par exemple:
il n’y a aucune équation de condition, et I’équation Adu = 0 ou
du = 0 est conservée par une transformation X arbitraire; de
méme pour A = 0 et I’équation d¢ = 0. Si ¢;; = 0, il n’y a de
nouveau aucun invariant; toute transformation X conserve
I’équation qu’on peut écrire

w = A(u)du + B(v)dv =0 (16)

Passons aux équations invariantes k,, = 0, hy; = 0; en dehors
du cas ¢;; = 0, elles ne peuvent étre vérifiées simultanément.
Supposons donc par exemple k;y == 0, hy,; = 0; Pinvariant «*
est essentiel, et les autres invariants s’en déduisent par le jeu
des opérateurs différentiels.
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Pour Ay, 52 0, kyy = 0, ¢’est B* qui est 'invariant essentiel.
Dans les deux derniers cas, on peut, par l'intégration d’une
équation de Liouville 1, donner les formes-types correspondantes
de ’équation = = 0, qui sont

w = (X — Y)’du + 2X'Y'Zdv = 0 pour by, = 0
(47)
® = 2X'Y'Wda 4+ (XN — Y)2dv — 0 pour k=0

les fonctions X (u), Y (¢), Z (u), W (¢) étant des fonctions arbi-
traires de leurs arguments.

21. — Conditions suffisantes. — Pour le cas général, la discus-

sion des conditions suffisantes, ou la recherche des invariants
suffisants, se fait exactement comme aux n° 9 & 11, en utilisant
a*, B*, w*, 9%, ¢*, &* a la place de «, 3, w, 9, o, ; h et k étant
de méme substitués & a et b, les conditions

0¥ — 85* = om¥ — ?)Y* = &ZJ* = 0 (’38)

assurent la conservation de la forme

g ¢ _<
@* = " du + eFdv = eg<ezdu + e * dv)
et par suite aussi de ’équation
@ = Adu + Bdv = Bledu + dv) = 0 ;

2%, B*, w*, y*, J* sont alors les invariants suffisants, c¢’est-a-dire
que, a* et £* étant indépendants, les fonctions

w¥ = QO (%, B%) v = 1" (a*, B%) P = I'* (a% | B¥)  (49)

doivent étre les mémes pour toute équation i = 0 équivalente
(3) A = 0. Si a* et 5* ne sont pas des fonctions indépendantes
de u, ¢, c¢’est-a-dire si 'on a

* Q0% B¥)2

4

e== ()

B e

et si I'un des invariants o*, y*, ¢* est une fonction de u, ¢ distincte

2X7Y/
Ko(X—Y)2’
K, étant une constante, X et Y des fonctions arbitraires de w et v respectivement.

1 Une équation de Liouville a la forme z;; = Koe™? et pour intégralee 2 =
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de a*, par exemple, on prolongera les invariants suffisants comme
au n° 10, de fagon a assurer la conservation de la forme @* par
les transformations 3. Le dernier cas possible est celul ou w*,

* ¢* sont, comme 3%, et alors comme tous les invariants, des
fonctlons de o*: ceci arrive maintenant dés qu'un des trois
invariants précédents dépend de «* seul.

22. — Formes de Pfaff normales ; constitution des invariants. —
Nous dirons qu’a la forme de Pfaff @ de ’équation @ = 0 corres-
pond la forme @*, normée pour les transformations 2

o* =Jo = A*du -+ B*dy A¥ — oh B¥ — o (50)
le facteur normant J étant donné par?!

5'-”"' / —_ C.. C.C A
. 5 . — 13 10 (1) b S . 'l
I=e * =\ AB—V““S"<*“€°‘11‘ C c? (”_—B> b

Les invariants de I’équation © = 0 sont ceux de la forme
normale w*, caractérisée par la relation (39); or, si nous appelons
normale une forme @ dont les invariants g et ¢ du second ordre
satisfont a la relation 2

) —p =1 (52)

nous voyons qu’une forme normale se confond avec sa forme
normée, puisqu’on a alors

11:8(L+[) J:’l,/t:(l,]‘i:/).":a-{—/).

el

¢y = @, — b

Nous pourrons donc dire « forme normale » au lieu de « forme
normée » *; l'introduction du facteur normant J, du second
ordre, a pour effet d’élever de deux unités les ordres des invariants
considérés aux n°s 6 et 7, et ce facteur intraduit aussi des irra-
tionnelles; mais la conservation d’une équation © = 0 est ainsi
ramenée & celle de la forme normale &*.

Les invariants et comitants formés et interprétés au n° 13 se
rapportent maintenant & ®* et a diverses formes linéaires,

1 Un tel facteur normant n’est jamais défini qu’d un facteur.constant. prés, et une
légere modification d’une forme normée est parfois avantageuse.
2 Cette relation peut s’exprimer au moyen de formes quadratiques extérieures déduites

de Adu, Bdv, 815du, voy dv, ou de ¢3 et 81 du -+ =91 dv; elle permet alors Pintroduction
d’une forme quadratique symétrique de différentielles.
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quadratiques, etc., également normées par des facteurs conve-
nables, ou & des équations correspondantes. On peut introduire
icl un nouvel intermédiaire pour la formation des invariants;
appelons invariant (ou comitant) brisé une expression s qu’une

transformation = reproduit multipliée par (l\i—;)q, le degré g de

Pexposant étant le caltbre de I'invariant brisé
5= <%>qs 05 = — qs (8" — 1) (53)

(les invariants brisés sont des rapports d’invariants relatifs.
(24) et (2,) de poids ¢, et le rapport de deux invariants brisés

R : . . S e A dv
de méme calibre est un invariant absolu. Ainsi C =, et d_; sont.
. . . ., . Ad A*d
des invariant et comitant brisés de calibre (— 1), donc Bd:t = B*dl:

est un mvariant absolu; des relations entre formes équivalentes.

AU BV 4 .
- B T 5 ¢ UV = ¢, )
on tire
‘i Sl =y BEY
v iB %3 (55)

mettant en évidence le facteur normant J; d’autres invariants.
relatifs de poids (— 1) remplacant ¢;; donneraient d’autres

formes normées.

A partir d'invariants f, g, les invariants brisés ;ﬁ’ : f‘—"
01 D01
serviront a la construction de nouveaux invariants et de formes.
ou d’équations différentielles invariantes.

Plutét que les invariants formés précédemment, on aura
%

. - . . ) o
souvent a utiliser des combinaisons telles que o*p* , B etc., et
*

. ete.

des invariants rationnels; ces derniers ne peuvent complétement.
remplacer ceux employés dans les conditions d’équivalence.

23. — Formes et équations réduites. — Les relations entre
invariants d’une équation & = 0, ou les équations invariantes
attachées a la précédente, donnent & celle-ci une forme type
qu’on peut parfois obtenir explicitement (il en est de méme pour
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les formes différentielles et les équations de degré quelconque);
une transformation 3 permet de ramener alors ’équation a une
forme réduite (généralement par modification des invariants
relatifs ou brisés), dont 'intégration entraine celle des équations
équivalentes; plusieurs formes réduites peuvent d’ailleurs corres-
pondre & un méme type.

Nous avons déja rencontré, au n° 20, certains types d’équations
dont les réduites sont faciles a former; les premiers correspondent
respectivement aux intégrales u = const., v = const., [ A (u) du
-+ B (¢v) d¢ = const. Nous avons indiqué aussi que pour 2 = g,
Péquation & = pud) = 0 se réduit a une<torme di = 03 on for-
merait facilement aussi les relations entre les invariants de formes
% et mn, & et &* en particulier.

Signalons encore quelques formes remarquables; remar-
quons d’abord que pour des formes % de méme invariant relatif

: A , L . \
11, le coefficient C = = est déterminé & un facteur arbitraire prés

B
i—(—((%z ; le cas ¢y = 0, déja étudié, donne un type invariant
d’équation © = 0.
Soit maintenant y* = g, 79 = 0; comme g = log ¢;4, ¢,y sera
le produit d’une fonction arbitraire de u par une fonction arbi-

traire de ¢, et I’on obtiendra par intégration

_ X{y) 71, W(v) =
C = Y1 ¢ v (56)

X, Y, Z, W étant des fonctions arbitraires de leurs arguments:
d’ou la forme-type

5= X)) e" WV, + Y()dv = 0 ~ (57)

et la forme réduite
5= "Wy 4+ dy=0 (57%)

Soit encore y* = — Ky, constante différente de zéro; Uintégration
de.’équation de Liouville — g,; = K, e9 donne l'intégrale

L\ ik Z=17() W =W
u == W
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mais ’on a alors

d’olt 'intégrale particuliére ¢ 4 Kl et par suite
0

. _K R !
N, Ky _ X { K, (Z — W) K, (58)

Y () — Y| 22w

ce qul donne la forme type @ = 01

24. — Equivalences (2;) et (3,). — Des formes 5 et ;, ou les
équations & = 0, &; = 0, étant équivalentes (3;), il suffit de la
'transformation X; particuliére

I.LL. —_ VL- " (EO)

I

pour passer de 5; a une forme % équivalente (2) & #5; de méme
pour les équations. En posant

Alw, v)du + B(u. V)dv = A, (u; . v;)du; + B; (u; . v;)dv;
on aura ('indice i caractérisant les expressions attachées a ;)

of _ i

du ov,

A.— B B. — A

1 1

, ele. pour fi("i ) "i) = ;(-1; , :')

Aux invariants (2) de 5 correspondent pour «; des expressions

1 Onsait que intégrale d’une équation de Liouville, écrite sous la forme z;, 72 = — Ko,
a été obtenue en partant d’'un ds? = 2% du dv & courbure constante K,; de méme

le ds2 de révolution pouvant étre ramené 4 la forme réduite 2@ (u -+ v) du dv ou a la
forme type 2 ®(X +Y) X’Y’ du dv, &, X(u), Y(v) étant des fonctions arbitraires, on se
trouve alors dans le cas ou tous les invariants du ds? dépendent d’un seul. Ceci indique
que la forme type

W=FX+Y)XN’du+ G(X 4+ Y). Y/dv

avec F et G fonctions arbitraires, ou la forme réduite
w=Fu-+v)du+ Gu+v)dv

correspondent au cas général ol les invariants de la forme 7y, ou ceux de I’équation
& = 0, sont fonctions d’un seul de ces invariants. Supposons en effet un invariant f tel
f11

10701
dutype X (u) + Y (v), ou encore X-Y est un invariant, dont tout autre invariant est
fonction dans le cas considéré; et on en déduit aussitdt la forme des invariants relatifs
(Z1) et (£5). On sait dans ce cas intégrer I’équation 73 = 0 en prenant pour variables
u 4+ vet u—nr.

que I'invariant

existe et soit fonction de f; f est alors fonction d’une expression
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faciles & former. Bornons-nous au_cas des équations de Pfaff
équivalenites (3;); en posant \V'— 1 = i, et suivant une méme
détermination, on trouve -

- . - . * T * b—x
(:i:—c,gi':g+zz7/z£f__—/;+z , a4, = —1f ,‘85.:—{1 ,

toy 3l

etc.

Les équations o = 0, ; = 0, équivalentes (3;), correspondent
donc aux relations

- 3 _— . . - ' . N »
o, =— Lﬁ- , ﬁi = lo , W, b, oy, = ¢, b =—uw , elc, (59)

[

l

et dans le cas général (o* et 8* fonctions indépendantes de u, ¢)
les conditions écrites sont suffisantes. On voit aussi que, dans ce
cas, deux équations de Pfaff ne peuvent étre simultanément
équivalentes (Z) et (Z;): il faudrait en effet 2* = §* = 0, et on
retombe alors sur le cas ¢;; = 0, ou la chose est possible.

Les conditions d’équivalence (£,) comportent le choix entre
les équivalences (2) et (2;); avec ¢ = == 1, on peut les écrire,
pour deux formes & et o,

‘a;—{-iﬁ;:a*—{—siﬁ* ﬂ;+‘iazr:ﬁ*+sio«.*

w0, + l!Jg — (o + &) Wy — 'Lg =wn — ¢ Ve =7 » ele
DEUX EQUATIONS DE PFAFF.
25. — Soit a conserver, par les transformations X, I’ensemble
des deux équations
| G, =0 @,=20 (61)

les notations étant celles du n° 14. Ici encore, on peut assurer
d’abord la conservation d’une des équations &, = 0, puis lui

rattacher celle de ’autre &5, = 0; on part alors, ddns le cas général,
des conditions

e, =& — 1’ ¥(c, — ¢)) = 0

On prévoit n (n 4 1) invariants distincts jusqu’a l'ordre n

’ ’ . . . . ,

et en général 2n nouveaux invariants d’ordre n; mais jusqu’a
Pordre n, il y a (n 4 1)(n — 2) invariants propres des deux

L’Enseignement mathém., 27¢ année; 1928, 17
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