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dratique y peuvent être reliés à ceux de formes linéaires. On

peut, en effet, écrire, avec les notations des nos 14 et 15

7. ~ us1 us2 us2 4- Zo '/.o ^ (33)

mais si la conservation du système de formes &2, entraîne
celle de y, l'inverse n'a pas lieu; par suite, les invariants de y sont
des invariants du système û*2, la réciproque n'étant généralement

pas vraie. On vérifiera ainsi les relations

4-ty2
H- —4—(notations dun° 14)

l a, n — è, donc X a, v ß (notations du n° 15), etc.
On peut d'ailleurs profiter de l'arbitraire de la décomposition

y G51 œ2 pour imposer aux formes linéaires &>1 et &s2 une relation
invariante assurant l'identité des systèmes d'invariants de y
d'une part, et d'autre part, en normant convenablement
ces dernières formes sans porter atteinte à la généralité de y,
ce qui est du reste possible de différentes façons, par exemple avec
s + £ 1, ou eÇ — 1. On est ainsi ramené à l'étude d'un système
particulier de formes linéaires.

En utilisant au contraire la relation y œ>2 4- Xo (où ily a
seulement deux choix possibles pour la forme ^0)? on se ramène
à l'étude d'un système formé par une forme m générale et une
forme quadratique particulière y0.

Cas d'une équation de Pfaff.

18. — Soit seulement à conserver Véquation

US 33 A (a \>) du -f- B (u v) d\' 0

ce qui astreint les coefficients à la condition

oA — A g' _ 8B — B V
A ~~

B
•

Ecartons d'abord les équations invariantes A 0, B 0, et
posons

(35)
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On devra prévoir (" b ('* — 2) invariants jusqu'à l'ordre n,

dont n — 1 nouveaux invariants d'ordre n, pour n 2. Pour
les premiers ordres, écrivons

oc £' — r/ [IV, 0]

Scio + ?" oc01 - C01 V - V [IV. 1]

j 0C20 2,20Ç' + c10Ç" + &c02 2f02V + f017i« - V"
I 8cn cn (f + V) [IV, 2]

cn est donc invariant relatif de poids (— 1); si cu ^ 0, posons

<• ^-C E^l x- (36)

et substituons à l'équation [IV, 0] et à la dernière équation
[IV, 2] les suivantes

ùh % %k m* [IV, 2']

Pour le troisième ordre, nous avons à former quatre nouvelles
équations; nous en écrirons six, en <îc30, $c03, dh10, dkm
$h01, celles en dhw et $k01 remplaçant les équations [IV, 1]

+ r 3r08 -Vv
o h10 - hm% + g" okm - k(n r' + V' PV, 3]

5 *io *io? -3*01 *oi V

19. — Si les invariants relatifs k10 et A01 ne sont pas nuls, on
obtient les deux invariants du troisième ordre

* « *,.*"* (37)

et les équations da* 0, iß* 0, pourront remplacer dans la
suite les équations en dk10 et <îA01, de sorte que l'on pourra
continuer comme au n° 6, par l'emploi régulier de paramètres
différentiels

v=/;o«~A ' (s8)

pour lesquels on devra cependant tenir compte des relations (36),
soit, entre h et k

l'ii - !<ii(39)
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Les quatre invariants obtenus comme paramètres différentiels
<de a* et ß*

to* a10e-h 0* ß*D<rÄ 9* &.*01e-k <I>* f0i*~k (40)

ne sont pas distincts, car

0* hn e~lh + k] _ a* ß* f* kuV{h+k) — a*ß*

6* — y* 1 (41)

Comme l'on a

j W= fn<>-' ~V W= /n^ ~

on peut encore introduire

*uJ=fn°-* <48>

Y* ft, 0* + <?* + 2 a* ß* (44)

nt prendre r,>*, y*, <J/* comme invariants distincts d'ordre 4

(O* £„a* y* âtlvg <]>* £(,ß* (45)

•et pour l'ordre 5, on pourra choisir 3** a*, $uy*, $2uß*.

Dans le cas général, les invariants a* et /3* du troisième ordre
sont essentiels, y* étant défini par (44).

20. — Cas particuliers. — Soit d'abord B 0, par exemple:
il n'y a aucune équation de condition, et l'équation Adu — 0 ou
du 0 est conservée par une transformation 2 arbitraire; de

même pour A 0 et l'équation dv 0. Si cn 0, il n'y a de

nouveau aucun invariant ; toute transformation 2 conserve
l'équation qu'on peut écrire

m A (u) du + B (i.) dv -= 0 (46)

Passons aux équations invariantes A;10 0, h01 0; en dehors
du cas cn — 0, elles ne peuvent être vérifiées simultanément.
Supposons donc par exemple &10 ^ 0, h01 0; l'invariant a*
est essentiel, et les autres invariants s'en déduisent par le jeu
des opérateurs différentiels.
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Pour A01 ^ 0, k10 — 0, c'est ß* qui est l'invariant essentiel.
Dans les deux derniers cas, on peut, par l'intégration d'une
équation de Liouvillex, donner les formes-types correspondantes
de l'équation ro 0, qui sont

US — (X — Y)2du -j- 2X,Y'Z dv 0 pour hQX 0

l47)
j m 2X'Y'Wdu + (X — Y)2dv 0 pour /,J0 0

les fonctions X (u), Y (e), Z (w), W (e) étant des fonctions
arbitraires de leurs arguments.

21. — Conditions suffisantes. —- Pour le cas général, la discussion

des conditions suffisantes, ou la recherche des invariants
suffisants, se fait exactement comme aux nos 9 à 11, en utilisant
a*, /3*, 9*, à la place de a, ß, «, 0, op, é ; h et k étant
de même substitués à a et è, les conditions

oa* Bp* or.>* By* U* 0 (48)

assurent la conservation de la forme

US* eh du -f- C dv ~ e2(^e2du
-f- e

2<A')

et par suite aussi de l'équation

& EE A du Bds> B {ec du -j- dv) 0 ;

a*, /3*, oj*, y*, -yp* sont alors les invariants suffisants, c'est-à-dire

que, a* et ß* étant indépendants, les fonctions

ro* 1} (a* ß*) y* — r (a* p*) 1»* *F* (a* ß*) (49)

doivent être les mêmes pour toute équation S — 0 équivalente
(2) à a* 0. Si a* et ß* ne sont pas des fonctions indépendantes,
de w, e, c'est-à-dire si l'on a

(Y* _ 2a* S*)2 — 1
— 0*<p* to*']>* — 0

4 ' 4

et si l'un des invariants &>*, y*, est une fonction de u, e distincte

i Une équation de Liou ville a la forme Koe 2 et pour intégrale e 2 — k (X-Y)2r
K0 étant une constante, X et Y des fonctions arbitraires de u et v respectivement.
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de a*, par exemple, on prolongera les invariants suffisants comme

au n° 10, de façon à assurer la conservation de la forme w* par
les transformations 2. Le dernier cas possible est celui où w*,

y*, sont, comme /3*, et alors comme tous les invariants, des

fonctions de a*: ceci arrive maintenant dès qu/un des trois
invariants précédents dépend de a* seul.

22. — Formes de Pfaff normales ; constitution des invariants. —
Nous dirons qu'à la forme de Pfaff ay de l'équation or 0 correspond

la forme es*, normée pour les transformations 2

ro* Jrar A*rf« + B*<fr A* eh B* ek (50)

le facteur normant J étant donné par 1

-«-*)-P'i
Les invariants de l'équation tô — 0 sont ceux de la forme

normale c5*, caractérisée par la relation (39); or, si nous appelons
normale une forme c5 dont les invariants ß et du second ordre
satisfont à la relation 2

0 — ff 1 (52)

nous voyons qu'une forme normale se confond avec sa forme
normée, puisqu'on a alors

cn au — bn eaArb J 1 h a k b g — a b

Nous pourrons donc dire « forme normale » au lieu de « forme
normée » tö*; l'introduction du facteur normant J, du second

ordre, a pour effet d'élever de deux unités les ordres des invariants
considérés aux nos 6 et 7, et ce facteur introduit aussi des

irrationnelles; mais la conservation d'une équation tà 0 est ainsi
ramenée à celle de la forme normale rô*.

Les invariants et comitants formés et interprétés au n° 13 se

rapportent maintenant à râ* et à diverses formes linéaires,

1 Un tel facteur normant .n'est jamais défini qu'à un facteur constant près, et une
légère modification d'une forme normée est parfois avantageuse.

2 Cette relation peut s'exprimer au moyen de formes quadratiques extérieures déduites
de Adu, B dv, pi0dw, «r0l dv, ou de fâ et ho du + «0idu; elle permet alors l'introduction
d'une forme quadratique symétrique de différentielles.
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quadratiques, etc., également normées par des facteurs
convenables, ou à des équations correspondantes. On peut introduire
ici un nouvel intermédiaire pour la formation des invariants;
appelons invariant (ou comitant) brisé une expression s qu'une
transformation 1 reproduit multipliée par Ie degré q de

l'exposant étant le calibre de l'invariant brisé

s S s — qs (§' — V) (58)

Ces invariants brisés sont des rapports d'invariants relatifs
(2X) et (22) de poids q, et le rapport de deux invariants brisés

de même calibre est un invariant absolu. Ainsi C ^ et sont
B du

des invariant et comitant brisés de calibre (— 1), donc

est un invariant absolu; des relations entre formes équivalentes

— — - U'V e (54)
A B tf 11 "

on tire

ïâô2 if^ (55)

mettant en évidence le facteur normant J ; d'autres invariants,
relatifs de poids (— 1) remplaçant cn donneraient d'autres
formes normées.

A partir d'invariants /, g, les invariants brisés ^ ~ etc.
/oi roi

serviront à la construction de nouveaux invariants et de formes
ou d'équations différentielles invariantes.

Plutôt que les invariants formés précédemment, on aura

souvent à utiliser des combinaisons telles que a*/3* etc., et
r*

des invariants rationnels ; ces derniers ne peuvent complètement
remplacer ceux employés dans les conditions d'équivalence.

23. — Formes et équations réduites. — Les relations entre
invariants d'une équation ü 0, ou les équations invariantes
attachées à la précédente, donnent à celle-ci une forme type
qu'on peut parfois obtenir explicitement (il en est de même pour-
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les formes différentielles et les équations de degré quelconque);
une transformation 1 permet de ramener alors l'équation à une
forme réduite (généralement par modification des invariants
relatifs ou brisés), dont l'intégration entraîne celle des équations
équivalentes; plusieurs formes réduites peuvent d'ailleurs
correspondre à un même type.

Nous avons déjà rencontré, au n° 20, certains types d'équations
dont les réduites sont faciles à former; les premiers correspondent
respectivement aux intégrales u const., v const., / A (u) du

+ B (e) dv const. Nous avons indiqué aussi que pour a /3,

l'équation [xdï 0 se réduit à une^-forme dl 0; on
formerait facilement aussi les relations entre les invariants de formes
rô et 6o et tô* en particulier.

Signalons encore quelques formes remarquables ; remarquons

d'abord que pour des formes 6o de même invariant relatif
A

cu, le coefficient C ^ est déterminé à un facteur arbitraire près

Ie cas cn 0, déjà étudié, donne un type invariant

d'équation 0.

Soit maintenant y* gn e~g 0; comme g log cn, c1± sera
le produit d'une fonction arbitraire de u par une fonction
arbitraire de c, et l'on obtiendra par intégration

X(u) ,z(«;wii0

X, Y, Z, W étant des fonctions arbitraires de leurs arguments;
d'où la forme-type

60 X (N) eZ[u)W{vUa + Y(*) dv 0 • (57)

et la forme réduite

60 eZ{ll)W[v)du + dv= 0 (57')

Soit encore y* -— K0, constante différente de zéro; l'intégration
de l'équation de Liouville — gn K0e<> donne l'intégrale

2Z'W
l^T"vTp Z Z(") w W(.)
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mais Ton a alors

+ v °

d'où l'intégrale particulière e + et par suite
"o

X(u) _ x S K0(Z W)2 )i (58)
Y(o)' Y 2Z'VY' Î

ce qui donne la forme type — 0 1.

24. — Equivalences (Zi) et (Zg). — Des formes ö et töj, ou les

équations tö 0, 0, étant équivalentes (2X), il suffît de la
transformation Zi particulière

; *i==T< (V)

pour passer de tô, à une forme td équivalente (2) à ö; de même

pour les équations. En posant

a(u v)du + ÏÏ(« Z)d~>- Ai(«i vjdi,. + B.(Ui

on aura (l'indice i caractérisant les expressions attachées à fdx)

Ai B Bi A d-=Jï> elC- P01"' ' ('i) ?(« • Ô
i) U

Aux invariants (2) de 5 correspondent pour des expressions

i On sait que l'intégrale d'une équation de Liouville, écrite sous la forme zu e z Ko>

a été obtenue en partant d'un ds- 2ez du dv à courbure constante K0; de même
le ds2 de révolution pouvant être ramené à la forme réduite 2<i> (u-f v) du dv ou à la
forme type 2 4>(X + Y) X'Y' du dv, <ï>, X(u), Y(v) étant des fonctions arbitraires, on se
trouve alors dans le cas où tous les invariants du ds2 dépendent d'un seul. Ceci indique
que la forme type

63 F(X + Y) X'du+ Gr(X + Y). Y ' dv

avec F et (1 fonctions arbitraires, ou la forme réduite

6) F (u + v) du + Gr (u + v) dv

correspondent au cas général où les invariants de la forme ?jo, ou ceux de l'équation
0, sont fonctions d'un seul de ces invariants. Supposons en elfet un invariant / tel

que l'invariant ~~ existe et soit fonction de /; / est alors fonction d'une expression
/10/01

du type X (u) + Y (v), ou encore X + Y est un invariant, dont tout autre invariant est
fonction dans le cas considéré; et on en déduit aussitôt la forme des invariants relatifs
(sx) et (s2). On sait dans ce cas intégrer l'équation 0 en prenant pour variables
u + v et u—v.
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faciles à former. Bornons-nous au. cas des équations de Pfaff

équivalentes (^); en posant V7= et suivant une même

détermination, on trouve

«< -ë, gi — g + ir., /if ï + »|, a* - iß' ßl= — ia

etc.

Les équations t# 0, ti-i 0, équivalentes (2;), correspondent
donc aux relations

a* - iß* ' ß* — ««*, %* — 1*
>

y* — Y' ' — w*
' eU"" (59)

et dans le cas général (a* et ß* fonctions indépendantes de m, c)

les conditions écrites sont suffisantes. On voit aussi que, dans ce

cas, deux équations de Pfaff ne peuvent être simultanément
équivalentes (2) et (2i) : il faudrait en effet a* ß* 0, et on
retombe alors sur le cas cu 0, où la chose est possible.

Les conditions d'équivalence (2g) comportent le choix entre
les équivalences (2) et (2$) ; avec £ + 1, on peut les écrire,

pour deux formes et üg

\r + ißt ** + £iß* ßt + i < ß* + £ 'rj*
\ ' (60)y* .* / * i i *\ * i* * t * * *

(ofr -j- y £p» —|— «1/ ; ro — ro — y y — s y etc.
Ö

1 é a S a

Deux équations de Pfaff.

25. — Soit à conserver, par les transformations 2, l'ensemble
des deux équations

0 ti2 0 (61)

les notations étant celles du n° 14. Ici encore, on peut assurer
d'abord la conservation d'une des équations sq 0, puis lui
rattacher celle de l'autre 0; on part alors, dàns le cas général,
des conditions

oq ?' — V 8(Cj — c2) 0

On prévoit n (n -f 1) invariants distincts jusqu'à l'ordre n
et en général 2n nouveaux invariants d'ordre n; mais jusqu'à
l'ordre ft, il v a (ft -j- l)(ft — 2) invariants propres des deux

L'Enseignement mathém., 27e année; 1928. 17
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