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c'est-à-dire par des conditions moins nombreuses et d'ordre moins
élevé qu'au n° 14; cet exemple montre l'intérêt qu'il y a, dans

chaque cas, à reprendre la discussion sur les données
particulières au problème proposé.

Une forme quadratique.

16. — Imposons-nous maintenant la conservation de la forme

x Ldu2 -f- 2 Mdudv + Ndv2 (26) -

Nous indiquerons seulement les grandes lignes de la méthode,
sans discuter les cas particuliers. Les coefficients L, M, N sont
astreints aux variations

8L 2L£' 8 M M (Ç' + rj') BN 2Nr/ (27)

Il y a à prévoir (" + 1) fin -f 2) jnvarjan^s jUSqU'à l'ordre ft,

dont 3n -f- 1 nouveaux pour cet ordre. On reconnaît en L, M, N
des invariants relatifs: L* et N sont (2^ et (22) de poids (— 2),
M est (2) de poids (— 1); si les équations L 0, M 0, N 0,
ne sont pas satisfaites, ils fourniront l'invariant d'ordre zéro.
En posant

L e21 M e,n N e2n

+ f 8/i rf [III, 0]

nous prendrons pour invariant d'ordre zéro

p. (28)

et substituerons à la seconde équation [III, 0]

B[J- 0 [III, 0'J

Dès ce moment, les équations dérivées fourniront régulièrement
les invariants

[ Ho =lioï + ï" *»0l "oiV + V
\ «10?' 8/01 - Z0?V [III, 1]

Ho HI=FoiV
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donnant pour le premier ordre

X /,ioe-z y =3 /0le*"?î p plQe~l a a01 e"n (29)

et mettant en évidence les paramètres différentiels1

v=(30)X 3un v S,/ p 3u\j. g âv[j.

Pour continuer, on substituerait aux quatre dernières équations

[III, 1]
oX 0 ov 0 dp — 0 oa 0 [III, 1']

et on tiendrait compte des relations introduites par

M)/' ~ XV (31>

(âuK) r= vp —Xcr

On pourra encore introduire le paramètre différentiel du
second ordre

(32)

et prendre pour invariants distincts d'ordre 2

a„x, ^ X, v, V - Sin v -
Les invariants p, 1, v sont essentiels ; dans le cas général, des

invariants suffisants seront donnés par u, v.

17. — Un cas particulier intéressant, celui des formes %0,

pour lesquelles L N 0, a été étudiée complètement par
M. A. Tresse (Zoe. cit., p. 54); en procédant un peu différemment,
nous introduirions, après les invariants d'ordres 2 et 3 : z mxx e~m

f 1
L z10 k01 e~m, les deux paramètres différentiels — et — ; d'où

X10 *01

les invariants d'ordre 4: —, — '*u etc.
y y y yA10 A01 10 01

Il reste à indiquer comment les invariants d'une forme qua-

i Nous avons, dans les divers cas étudiés, conservé la même notation pour les
paramètres différentiels àu î, /, sans que ces expressions soient les mêmes dans ces
différents cas.
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dratique y peuvent être reliés à ceux de formes linéaires. On

peut, en effet, écrire, avec les notations des nos 14 et 15

7. ~ us1 us2 us2 4- Zo '/.o ^ (33)

mais si la conservation du système de formes &2, entraîne
celle de y, l'inverse n'a pas lieu; par suite, les invariants de y sont
des invariants du système û*2, la réciproque n'étant généralement

pas vraie. On vérifiera ainsi les relations

4-ty2
H- —4—(notations dun° 14)

l a, n — è, donc X a, v ß (notations du n° 15), etc.
On peut d'ailleurs profiter de l'arbitraire de la décomposition

y G51 œ2 pour imposer aux formes linéaires &>1 et &s2 une relation
invariante assurant l'identité des systèmes d'invariants de y
d'une part, et d'autre part, en normant convenablement
ces dernières formes sans porter atteinte à la généralité de y,
ce qui est du reste possible de différentes façons, par exemple avec
s + £ 1, ou eÇ — 1. On est ainsi ramené à l'étude d'un système
particulier de formes linéaires.

En utilisant au contraire la relation y œ>2 4- Xo (où ily a
seulement deux choix possibles pour la forme ^0)? on se ramène
à l'étude d'un système formé par une forme m générale et une
forme quadratique particulière y0.

Cas d'une équation de Pfaff.

18. — Soit seulement à conserver Véquation

US 33 A (a \>) du -f- B (u v) d\' 0

ce qui astreint les coefficients à la condition

oA — A g' _ 8B — B V
A ~~

B
•

Ecartons d'abord les équations invariantes A 0, B 0, et
posons

(35)


	forme quadratique.

