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TRANSFORMATIONS A VARIABLES SEPAREES 247
¢’est-a-dire par des conditions moins nombreuses et d’ordre moins
élevé qu’au n°® 14; cet exemple montre I'intérét qu’il y a, dans
chaque cas, & reprendre la discussion sur les données parti-
culiéres au probléme proposé.

UNE FORME QUADRATIQUE.

16. — Imposons-nous maintenant la conservation de la forme
v = Ldu® + 2Mdudv + Ndv* (26) .

Nous indiquerons seulement les grandes lignes de la méthode,
sans discuter les cas particuliers. Les coefficients L, M, N sont
astreints aux variations

(n + 1) (3n + 2)
2

dont 3n 4 1 nouveaux pour cet ordre. On reconnait en L, M, N
des invariants relatifs: Li et N sont (2,) et (2,) de poids (— 2),
M est (2) de poids (— 1); si les équations L = 0, M = 0, N = 0,
ne sont pas satisfaites, ils fourniront l'invariant d’ordre zéro.
En posant

Il y a & prévoir invariants jusqu’a l'ordre n,

L — te M —_ el)l N — e?n

Sl=1F% dm=F 4 dn=q (111, 0]

nous prendrons pour invariant d’ordre zéro

M2

& LN

b= e?(/n-—l—w) —

et substituerons & la seconde équation [III, 0]
odu =0 [II1, 0]
Dés ce moment, les équations dérivées fourniront régulierement
les invariants
5 0l, = L& + ¢ Ongy = ng ' + 7
Bny = ny, &’ 8ly, = Iy, 7' (1L, 1]

— ! L !
( Oy = ("xog Olhgy == U™
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donnant pour le premier ordre

> —! . - o —! - -1
A= nge v=1,¢€ 0= ,e G = 1€ (29)

et mettant en évidence les parameétres différentiels?

S S=loet S f=f,e" (30)
h=3,n v=23| p=J,0 ¢ =J,

\

Pour continuer, on substituerait aux quatre dernieres équa-
tions [II1, 1]
h=0 =0 3p=0 d=0 [111, 1']

(SB[ =3, [ — A3, f (31)
(93, )= vpg — %3

On pourra encore introduire le parametre différentiel du
second ordre

ol = 1y ") (32)
et prendre pour invariants distincts d’ordre 2

s A - 2
T hy Toh, Sy, v, T e =90, 95 =2390u.39 u.

12 wy'? ¢ [ uy

Les invariants g, 4, v sont essentiels; dans le cas général, des
invariants suffisants seront donnés par u, 4,v,3 3,3 4,3, v, v.

17. — Un cas particulier intéressant, celui des formes y,,
pour lesquelles . = N = 0, a été étudiée complétement par
M. A. Tresse (loc. cit., p. b4); en procédant un peu différemment,
nous 1ntrodu1r10ns apres les invariants d’ordres 2 et 3: 2z = m,, e™
/‘10 t fOl .

“10 %01

L = 799 %91 €™, les deux parameétres différentiels ; d’ou
. . \ L 4 Z
les invariants d’ordre 4: 2%, & L ete.

%10 %01 %10%01

Il reste a indiquer comment les invariants d’une forme qua-

1 Nous avons, dans les divers cas étudiés, conservé la méme notation pour les para-
metres différentiels 3u 7 Sv /, sans que ces expressions soient les mémes dans ces diffé-

rents cas.
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dratique y peuvent étre reliés a ceux de formes linéaires. On
peut, en effet, écrire, avec les notations des n° 14 et 15

LE®w =00 47, Yo = tMedudv (33)

mais si la conservation du systéme de formes @,, @,, entraine
celle de y, I'inverse n’a pas lieu; par suite, les invariants de y sont
des invariants du systéme @,, ®,, la réciproque n’étant générale-
ment pas vraie. On vérifiera ainsi les relations

o= (notations dune 14)

l=a,n=0, donc 2 = a,v = 8 (notations du n° 15), etec.

On peut d’ailleurs profiter de 'arbitraire de la décomposition
y = W, W, pourimposer aux formes linéaires @, et @, une relation
invariante assurant lidentité des systémes d’invariants de
d’une part, @, et @, d’autre part, en normant convenablement
ces derniéres formes sans porter atteinte a la généralité de X
ce qui est du reste possible de différentes facons, par exemple avec
¢ +¢=1,ouef =1.On est ainst ramené & I’étude d’un systéeme
particulier de formes linéaires.

En utilisant au contraire la relation y = ®2% +4- 4, (ou il y a
seulement deux choix possibles pour la forme %), on se rameéne
a I’étude d’un systéme formé par une forme @ générale et une
forme quadratique particuliére y,.

CAS D’UNE EQUATION DE PFAFF.

18. — Soit seulement & conserver 1’éguation
w=A(n, v)du+ Bu. v)de =0 (34)
ce qui astreint les coefficients & la condition

5A — AE 3B — By ]
A T TTB (35)

Ecartons d’abord les équations invariantes A — 0,B =0, et
posons

:,e( a,———-/):(;

vl e

A:e(l B:Cb C:




	forme quadratique.

