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CAS DE DEUX FORMES DE PFAFF.

14. — Soient les deux formes de Pfaff
w, = A,du 4 B, dv W, = A, du + B, dv (24)

a conserver simultanément; nous nous en tiendrons au cas
général 1. Avec des notations analogues a celles du n® 6, on
partira des conditions

oa, =t oh, = 1

!

da, = ¢ 8b, = v/

et ’on pourra prévoir 2 (n + 1)? invariants jusqu’a I’ordre 2,
et 2(2n 4 1) de cet ordre. Un premier procédé consistera a
remplacer les équations (25) par

\ d(a, — a,) =0 0(by, — by)=10

[, 0]
2 da, = % 6b, =
d’ol1 les deux invariants d’ordre zéro
¢ — M1~ F 61’1‘*[’2
puis, par différentiation
!
Willy 1g = @1,102/ + & -61)1,01 = /)1)01'fl’ +
60510 = by 10F 0@y g1 = @y o171
:] ’ > ) [[I’ 1’1
Osyy = 548 B¢y = 2oy 0/
0% = b , 0o = Cop
donnant les invariants du premier ordre
% = by 10 e B = @y 01 e 08 1L o€ ML gy, g0 Cot e

: . : eq s _ o :
par Pemploi des paramétres différentiels f,, e et f,, e, qui
permettent de continuer les calculs comme précédemment a
partir des invariants essentiels ¢, ¢, «, 8. Nous retrouverons ainsi

1 Le cas particulier By = o, Ay = o se raméne, comme il a 6té indiqué aumn° 13, a
celui d’une seule forme générale @o. ‘
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les invariants «y, 8;, wq, 91, 01, ¢y, ... de la forme ®,, puis; & coté
) . ,- .

d’eux, la suite d’invariants analogues u,, 85, w,, ... de @,; en

effet, 'on a par exemple °

')

—dgy ”(ll *10

‘ T

== e

by = b, — log ¢ by 10 = 1’1,10 -

14
12 = l)2 108_a2 == E(U., —_— ::,Oe-a’)
En outre, il restera une suite d’invariants mixtes entre les
deux formes @, et @,, en nombre 2 (n 4 1) jusqu’a 'ordre =,
commencant par

= G 3106 2 01 e 2

Les conditions suffisantes d’équivalence seraient celles rela-
tives a @, auxquelles on ajouterait les conditions de = 8¢ = 0.

15. — Un procédé un peu plus symétrique consisterait & poser
(11-+-(12:t l"+l'2:b “1“’6‘2:2 1'1""(’2:;
2 2 2 2

et écrire les équations (25) sous la forme

da=10 3b=0
[, 0]
ba = E’ 8b = ‘q’

Apres les invariants d’ordre zéro, « et i, on trouverait ainsi
pour le premier ordre

-
t —b —-a b

(ﬁ:nme a.. e

—0 l‘“ —b
10 L 10 4

-
. —( s
o= b,e ¢, ag €, bye

et I’on continuerait de méme, les parametres différentiels se
rapportant & une forme @ = /A A, du + VBB, d¢, qui n’est
pas du faisceau linéaire de @, et @,; on remarquera aussi I'intro-
duction d’invariants irrationnels.

Les invariants essentiels sont a, b, a, 8; quant aux conditions
suffisantes d’équivalence, elles se présentent ici sous une forme plus
simple que précédemment, étant données par

P — 8(;}0(3*“) = 8(/7,06""“) = 5((701 e™?) = 8(170] e )= 0

R~ AT AT T L
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¢’est-a-dire par des conditions moins nombreuses et d’ordre moins
élevé qu’au n°® 14; cet exemple montre I'intérét qu’il y a, dans
chaque cas, & reprendre la discussion sur les données parti-
culiéres au probléme proposé.

UNE FORME QUADRATIQUE.

16. — Imposons-nous maintenant la conservation de la forme
v = Ldu® + 2Mdudv + Ndv* (26) .

Nous indiquerons seulement les grandes lignes de la méthode,
sans discuter les cas particuliers. Les coefficients L, M, N sont
astreints aux variations

(n + 1) (3n + 2)
2

dont 3n 4 1 nouveaux pour cet ordre. On reconnait en L, M, N
des invariants relatifs: Li et N sont (2,) et (2,) de poids (— 2),
M est (2) de poids (— 1); si les équations L = 0, M = 0, N = 0,
ne sont pas satisfaites, ils fourniront l'invariant d’ordre zéro.
En posant

Il y a & prévoir invariants jusqu’a l'ordre n,

L — te M —_ el)l N — e?n

Sl=1F% dm=F 4 dn=q (111, 0]

nous prendrons pour invariant d’ordre zéro

M2

& LN

b= e?(/n-—l—w) —

et substituerons & la seconde équation [III, 0]
odu =0 [II1, 0]
Dés ce moment, les équations dérivées fourniront régulierement
les invariants
5 0l, = L& + ¢ Ongy = ng ' + 7
Bny = ny, &’ 8ly, = Iy, 7' (1L, 1]

— ! L !
( Oy = ("xog Olhgy == U™
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