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Cas de deux formes de Pfaff.

14. — Soient les deux formes de Pfafï

US1 EE A 1du + Bj (h> -== A2 da -(- B2 dv (24)

à conserver simultanément; nous nous en tiendrons au cas

général1. Avec des notations analogues à celles du n° 6, on

partira des conditions
$ a. £' o b, r '

(25)
5 a2 !*' 8 b2 y/

et l'on pourra prévoir 2 (n + l)2 invariants jusqu'à l'ordre /&,

et 2 (2?i + 1) do cet ordre. Un premier procédé consistera à

remplacer les équations (25) par

|| § (a1 — a2) 0 o (h1 — b2) 0

I o a1 — % o bx y/

d'où les deux invariants d'ordre zéro

[il, 0]

ßa1~a2 Y — gbi—l)2

puis, par differentiation

a1>10?H- ?" ^ ^1,01 1*1 0l'''

0 ^10 Il O
'/VT 0 rt1^01

— £
w10 "= *01 SoiV

8Ç.0 r &
*»10 «01 "VIl

l]

donnant les invariants du premier ordre

a< ''1,1« e~"'ßi«1,01 =,o«"ai • Ï.O«""1 • -;o, e~b' Ï01 e~b

par l'emploi des paramètres différentiels f10 e~ai et >, qui
permettent de continuer les calculs comme précédemment à
partir des invariants essentiels sÇ,«Nous retrouverons ainsi

1 Le cas particulier B, o, A2
celui d'une seule forme générale w.

o se ramène, comme il a été indiqué au n° 13, à
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les invariants ai, j31? &>1? 01? <p1? Jq, de la forme puis, à côté
d'eux, la suite d'invariants analogues a2, /S2, w2, de œ2; en
effet, l'on a par exemple

Y

e °2 l>2 bx — log Z ^2}iq ~ hilt -^r

a2 — =* £ (\ —

En outre, il restera une suite d'invariants mixtes entre les
deux formes et &2: en nombre 2 (n -j- 1) jusqu'à l'ordre ft,
commençant par

ai 4-^2 +^2
S- ç -10 e 2 ^01 e 2

Les conditions suffisantes d'équivalence seraient celles
relatives à Œq, auxquelles on ajouterait les conditions Se <îÇ 0.

15. — Un procédé un peu plus symétrique consisterait à poser

at + «2 _ ht -I- b2 a, — «2 * /q — b2 r
2 - «

2
~~

2 ^ ~ h

et écrire les équations (25) sous la forme

o a 0 ob 0
[II', 0]

5 a Ç' ob — v{

Après les invariants d'ordre zéro, a et /T, on trouverait ainsi

pour le premier ordre

a G10 e ^01 e #10 e /q0 e aQl e G01 e

et l'on continuerait de même, les paramètres différentiels se

rapportant à une forme yAra2 du -f- yUj n2 de, qui n'est

pas du faisceau linéaire de 0^! et ce>2 ; on remarquera aussi
l'introduction d'invariants irrationnels.

Les invariants essentiels sont a, î>, a, ß ; quant aux conditions

suffisantes g?'équivalence, elles se présentent ici sous une forme plus
simple que précédemment, étant données par

oa o. b o (aiQe a) 6 (bJ0 ea o(«0le~/?) o b(n e h) 0
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c'est-à-dire par des conditions moins nombreuses et d'ordre moins
élevé qu'au n° 14; cet exemple montre l'intérêt qu'il y a, dans

chaque cas, à reprendre la discussion sur les données
particulières au problème proposé.

Une forme quadratique.

16. — Imposons-nous maintenant la conservation de la forme

x Ldu2 -f- 2 Mdudv + Ndv2 (26) -

Nous indiquerons seulement les grandes lignes de la méthode,
sans discuter les cas particuliers. Les coefficients L, M, N sont
astreints aux variations

8L 2L£' 8 M M (Ç' + rj') BN 2Nr/ (27)

Il y a à prévoir (" + 1) fin -f 2) jnvarjan^s jUSqU'à l'ordre ft,

dont 3n -f- 1 nouveaux pour cet ordre. On reconnaît en L, M, N
des invariants relatifs: L* et N sont (2^ et (22) de poids (— 2),
M est (2) de poids (— 1); si les équations L 0, M 0, N 0,
ne sont pas satisfaites, ils fourniront l'invariant d'ordre zéro.
En posant

L e21 M e,n N e2n

+ f 8/i rf [III, 0]

nous prendrons pour invariant d'ordre zéro

p. (28)

et substituerons à la seconde équation [III, 0]

B[J- 0 [III, 0'J

Dès ce moment, les équations dérivées fourniront régulièrement
les invariants

[ Ho =lioï + ï" *»0l "oiV + V
\ «10?' 8/01 - Z0?V [III, 1]

Ho HI=FoiV
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