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JACOBIEN, DIVERGENCE, FORMULE DE GREEN
PAR

M. Georges Bouligand (Poitiers).

ROTATIONNEL ET FORMULE DE STOKES
PAR

M. André Roussel.

Le but de cet article est d'exposer comment on peut généraliser
la définition de certains opérateurs du Calcul vectoriel, de

manière à conserver un sens aux identités fondamentales
relatives au changement de variables dans les intégrales multiples,
au théorème flux divergence, etc., dans plusieurs cas étendus où
elles cesseraient d'en avoir un sous leur forme classique, et cela

parce que des hypothèses de dérivabilité ne seraient plus
satisfaites. Nous nous placerons, pour simplifier le langage dans le

cas de l'espace à trois dimensions.

1. — Rappel de quelques notions préliminaires L

Soit un champ vectoriel obtenu en faisant correspondre à

chaque point M de l'espace le vecteur V{M). Indiquons rapidement

comment on définit la divergence de ce champ.
Le vecteur V (M) peut être considéré comme la vitesse d'une

particule d'un milieu continu qui se trouve en M à un instant
déterminé t\ on peut alors lui faire correspondre biunivoquement
la transformation infinitésimale permettant de déduire de la
configuration du milieu.au temps t sa configuration au temps
t + dt. Il est donc indiqué de faire dériver la théorie des champs
vectoriels de celle des transformations. Pour cela, nous passerons

i Voir les « Leçons de Géométrie vectorielle « de G. Bouligand (Vuibert), troisième
partie, paragraphes 154 à 174.

Les nos 1 à 8 de ce mémoire formaient l'introduction d'un cours sur les fonctions
harmoniques, professé à l'Université de Cracovie pendant le 1er trimestre de l'année
scolaire 1925-26. Les noa 9, 10, 11, 12 sont entièrement dus à M. André Roussel. (G. B.)
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; par l'intermédiaire des transformations finies et nous introdui-
j rons le Jacobien comme limite du rapport de deux volumes

I correspondants, lorsque le diamètre de l'un tend vers zéro. La
| divergence sera la notion limite du jacobien, obtenue en passant
I du cas des transformations finies à celui des transformations
j infinitésimales. C'est ce que nous allons préciser.

2. — Propriétés locales d'une transformation finie.

j Soit une transformation finie:

j p % M (1)

| qui à chaque point M d'un premier espace â>M fait correspondre
continûment un point P d'un second espace 3P 1. Le mode de

symbolisme (1) convient bien pour l'étude des propriétés de la
j transformation indépendantes des dimensions et correspond très
] exactement à la notation habituelle

j y ^ /»
] désignant une fonction d'une variable, par laquelle on établit une
| correspondance liant à certains points de xx' certains points de
| yy' (cas d'une dimension).
| Reprenons la transformation continue définie par (1). Soit

M0 un point particulier de <êM et soit P0 son transformé. La
transformation étant continue, si M est voisin deM0, P sera voisin
de P0. Une hypothèse naturelle et fréquente consiste à supposer
l'existence d'une transformation linéaire tangente en chaque
point M0 de la région considérée dans L'introduction d'axes
de coordonnées nous amènerait à remplacer l'équation (1) par
trois équations scalaires:

X f(x, y, z) ; Y g(x, y. z) Z h (x y, z) (2)

La transformation linéaire tangente est celle qui au point M0

; fait correspondre P0 et qui au vecteur dM(dx, dy, dz) fait corres-
» —>-
f pondre le vecteur dP(dX, dY, dZ), d'origine P0 et dont les
S composantes dX, dY, dZ sont les différentielles totales des fonc-

i L'espace n'est pas nécessairement distinct de l'espace û?m
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