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JACOBIEN, DIVERGENCE, FORMULE DE GREEN

PAR

M. Georges BouricanDp (Poitiers).

ROTATIONNEL ET FORMULE DE STOKES
PAR

M. André RoOUSSEL.

Le but de cet article est d’exposer comment on peut généraliser
la définition de certains opérateurs du Calcul vectoriel, de
maniére & conserver un sens aux identités fondamentales rela-
tives au changement de variables dans les intégrales multiples,
au théoréme flux divergence, ete., dans plusieurs cas étendus ot
elles cesseraient d’en avoir un sous leur forme classique, et cela
parce que des hypothéses de dérivabilité ne seraient plus satis-
faites. Nous nous placerons, pour simplifier le langage dans le
cas de l'espace a trois dimensions.

1. — Rappel de quelques notions préliminaires 1.

Soit un champ vectoriel obtenu en faisant correspondre a
chaque point M de l'espace le vecteur {f(M). Indiquons rapide-
ment comment on définit la divergence de ce champ.

Le vecteur V (M) peut étre considéré comme la vitesse d’une
particule d’un milieu continu qui se trouve en M & un instant
déterminé ¢; on peut alors lui faire correspondre biunivoquement
la transformation infinitésimale permettant de déduire de la
configuration du milieu.au temps ¢ sa configuration au temps
t + dt. 1l est donc indiqué de faire dériver la théorie des champs
vectoriels de celle des transformations. Pour cela, nous passerons

1 Voir les « Legons de Géoméirie vectorielle « de G. Bouligand (Vuibert), troisieme
partie, paragraphes 154 & 174. ,

TL.es n°s 1 & 8 de ce mémoire formaient 'introduction d’un cours sur les fonctions
harmoniques, professé¢ & I’Université de Cracovie pendant le 1¢r trimestre de I’année
scolaire 1925-26. Les n°s 9, 10, 11, 12 sont entiérement dus & M. André Roussel. (G. B.)
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par 'intermédiaire des transformations finies et nous introdui-
rons le Jacobien comme limite du rapport de deux volumes
correspondants, lorsque le diamétre de 'un tend vers zéro. La
divergence sera la notion limite du jacobien, obtenue en passant
du cas des transformations finies & celui des transformations
infinitésimales. C’est ce que nous allons préciser.

2. — Propriétés locales d’une transformation finie.

Soit une transformation finie:
P = %(N/]) (1)

qui & chaque point M d’un premier espace &, fait correspondre
continument un point P d’un second espace &, 1. Le mode de
symbolisme (1) convient bien pour I’étude des propriétés de la
transformation indépendantes des dimensions et correspond treés
exactement a la notation habituelle

y = [(x)

désignant une fonction d’une variable, par laquelle on établit une
correspondance liant & certains points de zx’ certains points de
yy' (cas d’une dimension).

Reprenons la transformation continue définie par (1). Soit
M, un point particulier de &, et soit P, son transformé. La
transformation étant continue, si M est voisin deM,, P sera voisin
de P,. Une hypothése naturelle et fréquente consiste & supposer
’existence d’une transformation linéaire tangente en chaque
point M, de la région considérée dans &,. L’introduction d’axes
de coordonnées nous aménerait a remplacer I’équation (1) par
trois équations scalaires: ‘

X =[x,y 9 Y=gle,y. 2. Z=hx.y 2. (2

La transformation linéaire tangente est celle qui au point M,
fait correspondre P, et qui au vecteur Eﬁ(dx, dy, dz) fait corres-
pondre le vecteur Zi—lg(dX, dY, dZ), d’origine P, et dont les
composantes dX, dY, dZ sont les différentielles totales des fonc-

< . . . , 4
1 I’espace (Or n’est pas nécessairement distinct de I’espace Eu.
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tions (2). Lorsque la transformation linéaire tangente existe
en chaque point M d’une région R de &, et lorsqu’elle dépend
continument de M dans cette région, on peut alors établir le
théoreme suivant: |

Soit (M,, P,) un couple de points qui se correspondent dans &y
&, et par la transformation ®. Soit:

fxo /‘1/0 /50
J(Mo) = | 8, 8y. &<,
h"”o h?/o h"o

le déterminant de la transformation linéaire ®,, tangente a
G en. M. Supposons que ce déterminant ne soit pas nul, ¢’est-a-
dire que By, ne soit pas dégénérescente. On peut alors définir
un certain voisinage de M, et un certain voisinage de P, entre
lesquels la correspondance définie par (1) s’exerce d’une maniére
biunivoque. A un volume infiniment petit et infiniment voisin de
M,, correspond un volume infiniment petit et infiniment voisin
de P,; le rapport du second au premier tend précisément vers
J (My). Cette fonction J (M), limite du rapport de deux volumes
correspondants, définie indépendemment du nombre des dimen-
sions, se réduit & la dérivée dans le cas d’une dimension. Notons
encore que’J (M) est définie, non seulement en valeur absolue,
mais encore en signe, celui-ci indiquant si l’orientation des figures
voisines de My, rapportée aux axes z, y, z concorde ou non avee

lorientation des figures voisines de P, rapportée aux axes
X, Y, Z\

r Moyennant ces hypotheses, une annulation du jacobien le long d’une surface S prise
dans @M et déterminant dans son voisinage deux régions RM et RM entraine 2n général

dans l’espace é‘;P la circonstance suivante: soit £ la transformée de S qui sépare aussi
. ; r . o
son voisinage en deux régions R, et R,,. Les points M voisins de S, de part et d’autre de

S (dans RM et R;a) ont pour transformés des points P voisins de T et situés d’un méme

cOté de T (p. ex. dans Ry exclusivement). I1y a 13 une propriété indépendante du nombre
n des dimensions. Dans le méme ordre d’idées citons la suivante qui généralise le théoreme
de Rolle: soit 1a transformation P = %(M) soumise a toutes les hypotheéses précédentes,
et soit un domaine D de I'espace é;M, limité par une surface d’un seul tenant, douée
d’un champ continu de normales. Supposons que tous les points de cette surface aient
méme transformé Py. Dés lors on peut trouver dans D au moins une surface sur laquelle
le jacobien s’annule. Pour le démontrer, & 'exemple de ce qui se fait dans le théoréme
de Rolle, on considérera la surface qui délimite le domaine A recouvert par les transformeés
des points de D. Elle provient d’une certaine surface du premier espace, sur laquelle il y
a précisément annulation du jacobien, avec changement de signe.
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REMARQUES. — Nous venons d’employer la locution volume.
Par volume, nous entendons ici un domaine (= ensemble d’un,
seul tenant dont chaque point peut étre pris pour centre d’une
sphére dont tous les points appartiennent 4 I’ensemble) dont
la mesure intérieure et la mesure extérieure sont égales. Ces mesures
sont définies & 'aide d’un réseau binaire progressif (formé a
partir d’un cube initial arbitraire, du pavage régulier de ’espace
obtenu en lui juxtaposant des cubes égaux, et de tous les pavages
analogues qui s’en déduisent par subdivision binaire des arétes,
indéfiniment répétée). L.a mesure intérieure est alors la borne
supérieure des volumes polyédres intérieurs au domaine donné et
obtenus par sommation de cubes du réseau indéfini, tandis que
la mesure extérieure est la borne inférieure des volumes des
polyedres englobant le domaine et obtenus aussi par sommation
de cubes du réseau indéfini. Le domaine donné est un volume
seulement quand ces bornes sont égales.

3. — Opportunité d’une définition directe du jacobten.

Il n’est pas nécessaire de passer par I'intermédiaire de la trans-
formation linéaire tangente pour définir le jacobien. L’hypothese
d’existence de cette transformation introduit a la généralité
d’inutiles restrictions. Supposons que les formules (2) soient du
type suivant:

X =2z Y =y Z =z + d(x, y) .

Nous aurons une transformation conservant les volumes, en
grandeur et en signe. Il est donc naturel de lui attribuer un
jacobien égal a + 1. Cependant, si la fonction ¢ (x, y) n’a pas
de dérivées, il n’y aura pas de transformation linéaire tan-
gente. |

Il vy a donc lieu de définir le jacobien directement. On peut
proposer diverses définitions, exigeant chacune une revision des
propositions ci-dessus rappelées, notamment du théoreme relatif
a la réversibilité locale de la transformation. En réalité, nous
n’aurons ici & raisonner que sur des transformations intégralement
biunivoques (déformations), a la classe desquelles les transforma-
tions infinitésimales appartiennent nécessairement.
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Le moment est revenu de préciser nos hypothéses sur la
transformation .

a) A une région R, de &y, elle fait correspondre biunivoque-
ment et continument une région R, de &,.

b) A toute sphére intérieure & R, correspond effectivement un
volume intérieur & R,. Soit ¢ le volume de la spheére, ¢’ son
correspondant.

¢) Soit un point fize intérieur & (Ry; prenons une spheére

infiniment petite de centre M; alors le rapport %tend vers une

limite déterminée J (M).
d) Lorsque M décrit une région quelconque, strictement inté-
rieure & Ry, la famille des fonctions L— de M (dépendant du

parameétre ¢) est bornée dans son ensemble, cette borne s’appli-
quant nécessairement a J (M)..

e) J (M) est continue & l'intérieur de (Ry.

Nous appellerons J (M) le jacobien sphérique centré, locution
proposée par M. Wilkosz et qui a l’avantage de rappeler les
conditions particuliéres de la définition, favorables dans ceriaines
recherches, par exemple pour lobtention de I’harmonicité
moyennant des hypotheses simples et bien conformes au mode
d’invariance du laplacien ! qui sera défini comme une diver-
gence sphérique centrée (n° 7).

4. — Valeur du volume aprés une déformation finte.

Dans tout ce qui suit les intégrations ont lieu au sens de
M. Lebesgue. Des hypotheses ¢) et d) nous déduisons d’abord ce
résultat : & tout volume (intérieur & R,) du premier espace
correspond un volume du second.

Il suffit pour cela d’établir que le transformé d’un ensemble de
mesure nulle est aussi de mesure nulle. Servons-nous d’un

* Dans d’autres questions, il pourra étre plus avantageux de faire usage d’un jacobien
sphérique non centré, ou encore d’un jacobien cubique (locutions qui se comprennent
d’elles-mémes). Notons que pour le théoreme de variance des intégrales multiples, qui
va nous occuper, et qui appartient en réalité & la géométrie linéaire, il est indiqué
d’utiliser une forme de jacobien obtenue en substituant aux spheres de centre M des
volumes v tels que la figure (M, v) reste homothétique d’une figure fixe. Il n’y a d’ailleurs
qu’une simple transposition & faire dans la démonstration qui va étre donnée, en rem-
placant les spheéres de centre M par les volumes v soumis a Phypothese précédente.
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réseau binaire progressif. Il nous permettra d’enfermer I’ensemble
dans une infinité de cubes dont la somme des volumes est
arbitrairement petite. On peut énoncer la méme propriété pour
la somme des volumes des sphéres circonscrites a ces cubes;
or, de I’hypothése d) nous tirons une limite supérieure pour la
somme des volumes transformés des cubes, égale au produit
d’un nombre fixe par la somme des volumes des sphéres précé-
dentes. Le résultat est donc établi. En méme temps, il est
clair qu’a tout nombre positif ¢, il est possible de faire corres-
pondre un nombre positif ¢ tel que I'inégalité:

mes. d'un ens. de Ry < 8

entraine:
mes, ens. transf. < ¢

c’est ce qu'on exprime en disant que la transformation G est
absolument continue.

Il s’agit maintenant de prouver qu’a un volume quelconque
V, complétement intérieur & R, correspond un volume V'
(nécessairement intérieur & (R,;) donné par la formule:

Vo= l/"J(.\‘l)de . (3)

Pour cela, nous tablerons sur la possibilité de trouver a l'in-
térieur de chaque volume un systéme d’une infinité dénom-
brable de sphéres, mutuellement extérieures, et dont ’ablation ne
laisserait subsister qu’un ensemble de mesure nulle. Admettons
cette possibilité, qu’il suffirait d’établir pour un cube, le volume
pouvant étre obtenu au moyen d’une infinité dénombrable de
cubes d’un réseau indéfiniment progressif.

En vertu de ce lemme, nous pourrons trouver dans Q un
premier ensemble E de spheéres, conformément aux conditions
indiquées. De E; passons & un ensemble analogue E,, en prenant
chaque spheére de E,, enlevant de celle-ci une sphére concentrique
et de rayon moitié, et appliquant le lemme au volume restant.
En répétant indéfiniment ce procédé, nous aurons une suite:

2

E,, By, ... By, .
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d’ensembles de sphéres dont les centres formerbnt des ensembles

désignés par

e €y o-- €4

1

L’ensemble e, contient tous les ¢; d’indices ¢ < k. L’ensemble
e,, formé de tous les points des e, est dénombrable et partout
dense.

Soit maintenant la fonction Jx(M) définie dans les sphéres de
Ep de la maniére suivante: dans chaque sphére ’dont le volume est

. . ' .
¢, nous lui attribuons la valeur constante — . Cette fonction

est partout définie dans V, sauf sur un ensemble de mesure
nulle ot nous pouvons la prendre égale & J(M). L’intégrale de
la fonction ainsi construite a évidemment pour valeur le volume
V', quelque soit k. Done, lorsque % croit indéfiniment, elle tend
vers une limite égale & V'. Or, en vertu de la continuité de J (M),
les fonctions J, (M) qui sont bornées d’apres d) tendent vers
J (M) dans tout V lorsque k croit indéfiniment. La formule (3)
apparait alors comme une conséquence immédiate de ce théo-
réme classique de Lebesgue: l'intégrale de la limite dans le champ
des fonctions bornées est égale a la limite de U'intégrale.

Notons que le raisonnement présenté sous cette forme ne
peut se passer de I’hypotheése de la continuité de J(M): I'en-
semble sur lequel nous savons d’'une maniere immeédiate (c’est-a-
dire sans invoquer la continuité) que Jr(M) tend vers J(M) se
compose de ’ensemble dénombrable e, et d’une suite dénom-
brable d’ensembles de mesure nulle omis & chaque application
de ce lemme. La limite n’est donc assurée sans la continuité que
sur un ensemble de mesure nulle. Mais, si ’on fait ’hypothése de
la continuité, entrainant ’uniforme continuité, on voit aisément
que cette limite est partout assurée.

5. — Conditions de validité de la formule (3).

Le champ de validité de la formule (3) est en réalité beaucoup
plus large que le champ défini par les hypothéses a, b, ¢, d, e.
Cette formule subsiste en réalité dans les conditions les plus
générales pour lesquelles le second membre a un sens, ¢’est-a-
dire lorsque la fonction J (M) existe et est sommable. La dé-

L’Enseignement mathém., 27¢ année, 1928 3
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monstration conduit alors & considérer l'intégrale du second
membpre de (3) comme une fonction additive et absolument
continue de ’ensemble V des points auxquels on ’étend. Dans
ces conditions, la différence:

V’~.fJ(M)de
4

est aussi une fonction additive et absolument continue, dont la
dérivée sphérique centrée est partout nulle. Le probléme consiste
a en déduire que cette fonction est nulle. Pour les éléments de la
solution voir Lebesgue, Ann. Ec. Norm. 1910, et de La Vallée-
Poussin, Intégrale de Lebesgue, fonctions d’ensembles, classes
de Baire, chap. IV. | |

6. Conséquences de la formule (3).

Reprenons nos hypotheses simplificatrices de la continuité
de J (M); on déduit qu’il y aura nécessairement dans tout

’

volume V des points ou J (M) sera égale a VV (résultat signalé

par Darboux, dans des conditions plus particuliéres, et compa-
rable a la formule des accroissements finis, dans le champ des
fonctions monotones & dérivée continue). De ce fait, il résulte
que la limite du rapport de deux volumes correspondants est
J (M) lorsque le premier de ces volumes est infiniment voisin
de M (sans plus). | o

Il n’y a alors aucune difficulté & déduire de ces résultats le
théoréeme général de variance d’une intégrale multiple:vr

Sa®rdo, = [§(BM)IM)do, (%)

v’ A%

théoréme qui d’ailleurs a une signification physique intuitive et
exprime la conservation de la masse par élément; lorsqu’on
désigne par f (M) la densité de la matiére qui existe au point M
du volume V, par g (P) la densité qui régnera apreés la déformation,
au point P correspondant de V', on aura ngcessairement :

f(M) de = g(P) de
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d’ou:

(M) = g(P) o= = g|BM)]I(M) .
N g

Le fait que la limite J (M) est valable indépendamment . de
la forme des éléments de volume nous dispense d’insister sur la
démonstration de la formule (4).

7. Le théoréme flux-divergence.

Revenons aux champs vectoriels, ou, ce qui est équivalent:
aux transformations infinitésimales. Nos hypothéses seront ici
les suivantes: |

a,) Le champ est défini et continu dans une certaine région R 1.

¢;) Soit M un point fixe intérieur & R, décrivons une sphére de
centre M, de volume ¢ et soit ¢ le flux du champ sortant de

cette sphére. Le rapport —? tend vers une limite quand‘ ¢ tend
vers zéro: cette limite peut s’appeler divergence sphérique centrée.
d,) % reste inférieur & un nombre fixe, cette limitation s’appli-

quant nécessairement a la divergence.

e;) La divergence est une fonction continue de M.

Nous avons présenté ces hypothéses en les faisant correspondre
trés exactement aux hypothéses admises dans la démonstration
de (3). Seulement ici, I’hypothese b;) disparait: elle est remplie
ipso-facto en vertu de la continuité du champ vectoriel.

L’hypothése b) consistait en effet & exprimer qu’'un volume
sphérique correspond effectivement & un volume; ’hypotheése b,)
consistera donc en ce que, notre champ étant regardé comme
un champ de vitesses, le volume du fluide contenu dans une
sphére & I'instant £ admet une dérivée par rapport a z. Or, cette
dérivée est justement le flux du champ sortant de la spheére.

Soit done le champ Vectoriel—V(M) satisfaisant aux hypotheéses
précédentes. Soit un volume Q intérieur & la région R et limité
par une ou plusieurs surfaces, possédant chacune un champ
continu de normales, et dont I’ensemble sera désigné par 3.

1 Nous verrons un peu plus loin que 'hypothése b1) qu’on déduirait de b) est remplie
ipso facto.
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La masse du fluide qui occupe Q & I'instant ¢ a pour volume une
certaine fonction du temps. Le théoréme de variation du volume
exprimé par la formule (3) nous apprend que cette fonction du
temps a pour dérivée:

iaQ  p,.

Pl fdu Vdo .

Q
D’autre part, on a également :

dO > =
-d—t-= V.VdO'
z

-) - -
v désignant le vecteur unité de la normale extérieure en un point
de 2. D’ou le théoreme flux divergence

- - -
fdiwdm — V.V ds . (5)
Q =

En réalité, en conservant les mémes hypothéses sur X, on
pourrait montrer (a la base des résultats signalés sans démons-
tration au n° 5) que cette formule est valable dans des conditions
beaucoup plus générales: il suffit de supposer ’existence et la
sommabilité de div. V.

8. Application.

Il est clair que tout ce que nous venons de dire dans le cas de
I’espace a 3 dimensions s’applique, avec des modifications évi-
dentes au cas ou les vecteurs considérés appartiennent tous au
méme plan. Le jacobien sphérique centré par exemple, sera
remplacé par un jacobien circulaire centré, et nous aurons la

relation:
fdiv'v".dc -_-f'\’f.?ds (6)
S C

C étant une courbe fermée & tangente continue sans point
- . ’1 7 .
double, v la normale extérieure, dg 1’élément d’aire.

Soit alors P (z, y), Q (z, y) deux fonctions données, V le vecteur
de composantes Q et — P; il est clair que 1’on a:

[ Pdx + Qay =f'\7.3d.s .
C C
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Par suite, pour tout contour fermé & tangente continue

-sans point double C parcouru dans le sens direct:

dex 1+ Qdy =/‘divi7.dc )
C - S

on en tire le théoréme suivant, généralisation du théoréme
classique sur Dintégrale des différentielles exactes:

La condition nécessaire et suffisante pour qu’une intégrale
curviligne |

dex + Qdy
C

soit nulle le long de tout contour fermé sans point double est que la
divergence circulaire centrée du vecteur : :?Q — _??P soit identique-
ment nulle dans la région du plan envisagéel.

D’apres (7) cette condition est suffisante; elle est aussi né-
cessaire puisque le long de tout cercle de centre M l'intégrale

f (XQ — yP).vds

C
é¢tant nulle par hypothése, il en sera de méme de son quotient
par wp? quel que soit p; d’ou existence en chaque point d’une
divergence circulaire centrée nulle.

19. Définition du rotationnel.

Pour définir le rotationnel, nous poserons:
div(VA#) = u.rot V (8)
ol u désigne un vecteur unitaire de direction quelconque, mais
fixe 2. On voit immeédiatement que si les composantes de V ont
des dérivées du premier ordre par rapport a z, ¥, z, le rotationnel
ainsi défini coincide bien avec le rotationnel classique. Dans le

1 L’énoncé suppose la continuité de la tangente. On pourrait d’ailleurs aisément,
4 la faveur d’un théoréme de M. Lebesgue, étendre le résultat aux courbes recti-
fiables. ,

2 Pareillement, on pourrait unifier la définition du gradient et de la divergence et
aboutir & la notion de gradient sphérique centré en utilisant Yidentité

— -> =>
grad @ .u.= div(Pu).
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cas contraire pour justifier la définition fournie par ’équation (8)
il faut:

<7 » i : r J4 P4 4 .
10 Que V A u ait une divergence (au sens généralisé défini

| plus haut).

20 Que (8) définisse alors bien un vecteur et un seul. Examinons
le premier point: la condition énoncée sera remplie si 'intégrale:

1 - -
: 3f(V/\u).vdc (9)
3eS
prise sur la sphére S de centre M et de rayon p admet une limite,
quand p tend vers zéro, continue avec M, et reste inférieure quel

que soit p & un nombre fixe A. Or, on peut écrire (9), en dési-
gnant par @ le volume de S:

-
u

— (v A V)ds (10)

Alors 1° sera satisfaite si la longueur du wvecteur _\T/V*(p,M)
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reste inférieure a A quel que soit p et M, et si W tend vers une

limite continue quand p tend vers zéro. On aura alors d’apres (8),
(9) et (10):
otV = lim— (¢ A V)do ; (11)
=0 (53] 3

cette relation (11) définit alors complétement le rotationnel
et la condition 20 est bien remplie.

10. Formule de Stokés.

Nous allons montrer que I'existence et la continuité du rota-
tionnel généralisé que nous venons de définir dans le para-
graphe précédent suffisent pour assurer l'exactitude de la

formule de Stokes: ,
fi’f.&“ﬁ:f;bﬁ’f.?dc (12)
C =

3 étant une portion de surface admettant un champ de normales
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continu, limité par une courbe fermée simple G admettant
une tangente continue.

Nous allons commencer par établir (12) en prenant pour C un
contour triangulaire A,, Az, Ag: X sera alors la portion de

plan intérieure a ce triangle, o sera un vecteur five u perpendlcu-

laire au plan A; A, A; et tel que ’observateur disposé suivant u
voit un mobile décrivant A;A,A; tourner dans le sens d’orien-
tation des axes de coordonnées. Nous voulons calculer I’intégrale:

—_— -

I = rot V.uds ;
h

elle est, d’aprés (8) égale a:
fmqVA%w;
b)

transformons cette-intégrale-de surface, en intégrale de volume
& P’aide de Partifice suivant: formons un prisme droit de bases
(A, A;, A)), (A, A, A;) distantes d'une quantité infiniment
petite I. Nous ferons de plus:

On a alors, a un infiniment petit prés:

I———fdlvv dco

Q étant le domaine prismatique, dw 1’élément de volume. Mais
le théoréme flux-divergence nous donne:

1 - -> -
I=TfWAMNﬁ
S

‘ . . - . y . .
S étant la surface du prisme, ¢ la normale extérieure a S. Mais on
peut encore écrire:

1 - - -
1=TIWAqVﬁ.
S '
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Cette intégrale se scinde en 5 intégrales partielles étendues
respectivement ~aux deux bases et aux trois faces latérales.
Les deux premiéres sont nulles car on a alors:

- - - -> - - - -
u/\Nv =u/Nu=20 ou u Nv =u/N(—u =0.

Considérons donc la portion I, de I relative a la face
A, A, A;A]. Nous avons:

A A
“/\”"AIA2

-’ . . ’ .
D’autre part, soit dM un vecteur infiniment petit colinéaire
et de méme sens que A; A,. Nous avons:

dS = [.dM

et nous pouvons écrire, & un infiniment petit pres:

A A
I — 18 Y aM .
A ws V. dM

ou encore:

If
~
<$
=
=4

»

En raisonnant de méme pour I;, I,, I, on voit immédiatement
que l'on a:

- ->
I = V.dM

(!

G étant le contour A; A, A,.

Il est alors facile d’établir la formule (12) pour toutes les sur-
faces 2. En effet, en vertu des hypothéses relatives a la continuité
du champ de normales & 3 et a celle du rotationnel on peut
trouver une surface polyédrale 3, inscrite dans X, limitée par
un contour I', inscrit dans I' telle que la différence

— - A—>
frotV.v.dc-—J rot V.v, .do,

X

=
n
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tende vers zéro quand n augmente indéfiniment, ainsi que:

f’\’f.d?\’a _f’»’*.di’an
r Ly

Or:

Tl V.7 ds, = [ V.di, (13)

r

-
~“n n

car 1l est clair que l'on a:

i—=n

f‘\’f.dﬁr=2f‘7-dﬁ
rn

i=1 C;

C; étant une face triangulaire quelconque de 3, car tout coté
appartenant a deux triangles a la fois de X, sera parcouru dans
les deux sens, et les intégrales de V.dM correspondantes se
détruiront; finalement il ne restera que les intégrales relatives
aux cotés de la courbe limite T',,. On déduit alors immédiatement
I'identité (12) de I’équation (13) en tenant compte de ce que nous
avons dit plus haut. Le théoréme de Stokes se trouve ainsi établi.

Remarqué: La formule de Stokes montre que l’intégrale:

—_ - -

rot V.v do

2

“prise sur toute surface fermée 3 est identiquement nulle. On en

déduit alors facilement que le champ vectoriel rot {7, défini par
Iéquation (11) admet partout une divergence qui satisfait a
I'identité remarquable:

div (rot V) = 0

. N _’ .
comme dans le cas classique ou les composantes de V auraient
des dérivées des deux premiers ordres.

11. Composantes du rotationnel.

Nous allons établir le théoréme fondamental suivant :
Soit le vecteur :

- -> -
V==xPx, y 2 +yQx, y, 2 + zR(z, y, 2
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et M (o, Yo, 29) un point quelconque de U'espace de coordonnées
(o, Yo, 29)- Considérons les vecteurs :

—_— - . ->
V., =yR(x,, y. 2) — 3Q(x,, ¥, 2)
—_— -> -
Vi =3P 5. 9 — PR(. 4. 9

- -+
Ve =2Q(x, y, 5) —yPlx, y, z)

chacun d’eux admet en M une DIVERGENCE CIRCULAIRE CENTREE,
et les valeurs de ces divergences sont respectivement égales aux

composantes en M du rotationnel de V.
Le théoréme est bien exact dans le cas ou P, Q, R sont déri-
vables par rapport a (z, y, z); en effet ces divergences sont:

>R 2Q  »P »R_~ »Q »P

oy oz vz ox  dx  dy
Nous allons montrer qu’il est encore vrai dans le cas actuel
plus général.
Soit C un cercle de centre M, de rayon p contenu dans le plan
mené par M perpendiculairement a Ox.
La formule de Stokes nous donne:

. - — - -> -+
fv.rotV.do' = V.dM .
S C
Or:
V=2 i’).df\)’l=[;Q(xo,y,z)+ZR(xo,y,z)].dM.

- o« . I3
Soit n la normale au cercle G dirigée vers ’extérieur. On a
facilement:

-> - -> - -> -
[yQ(x, ¥, 3) + 2R(%, y, 2)].dM = [y R(x,. y, 2) —2Q(x,, y, 2)]nds,
s étant ’arc de C. On a donc:
f;.;oT-\?dc =f-\71.;ds
8 c
ce qui peut encore s’écrire:

— - 1

-+ - 1 -+ > - —_ - > -
x.rotMV—{—-S-fx.[rotV—rotMV]dc=-,-‘/‘V.u'ds.
S C
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L’expression:

bf rotV—rot V]d

tend vers zéro quand le rayon du cercle C tend vers zéro: en
effet, elle est plus petite que:

1 .
S max gurc| X — XM]fdc — max guo| X — X, |
S

en désignant par X, Y, Z les composantes de rot V. On a done

finalement :
; - —> = -
; X = «x. rotMV. = div M\/1
S 3 = -+
Y =y .rotMV = dl\'MV2
- —>» > -
Z = 3. ‘OtMV = anV3

Nous écrirons encore ces équations:

| X = div,_ V

!~ D, Vg
-

Y == dIV )V
->
3

Z = dlv(

les symboles figurant dans les seconds membres ont une signi-
fication évidente d’aprés ce que nous avons dit plus haut. On a

d’ailleurs:
div,, V = div (V A 2)
. - - -
div, V = div(V A\ 3) (14)
div, ¥V = div (¥ A )

car, d’aprés la relation:

- - —> =

div(V Au) = wrotV | (8)’
dont nous sommes partis pour définir le rotationnel, on a bien:

=divVAZ); Y=div(VAg: Z=div(VA2Z.
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Remarquons en passant que ’existence de ces trois derniéres
divergences.entraine. celle- du rotationnel, en vertu de ’identité
(8’). Nous allons de méme établir la proposition suivante:

] = . . # .
St un champ vectoriel V admet trois divergences partielles il
admet aussi un rotationnel dont les composantes sont :

. - . - . ->
X = le(x)V » Y = le(y)V ; Z = dIV(z)V .

D’apfés la remarque précédente il suffit d’établir que
div(VAz), div(VAgy) . div(VA?2

existent et satisfont aux équations (14). Calculons donc
div (V A z). On a:

- - - -
VAxz =yR(x, y, 5) —z2Q(x, y, 3)

il faut calculer I'intégrale:

1=f('y’R — 2Q).vds

étendu a la sphére 2 de centre M qui sera pris pour origine des
axes de coordonnées, et de rayon p. Or:

-
14

* . . -
en désignant par n la normale extérieure au cercle Cy intersection
de la sphére £ avec un plan d’abscisse x, perpendiculaire a Mz.
On a:

2 . 2
Thea= V=2
p

->
. n

et:

2 __ 4o -
1=Lf—‘£e—;—*i(§R——;Q).ndc.

Or, en désignant par ds un élément de longueur du cercle Cy,
nous pourrons écrire:
pdxds

deo =
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et nous avons l'identité suivante, facile & établir:
+p

I=f VP2;—~%‘2 pdx 'f?"l.;{ds.

P PV

Or:

fvl.;ds =fdi\'w-{/dydz
Cap Sy

S, désignant 1’aire du cercle Cy. Il vient done:

+p
I = fdxfdivx—{fdydz :
-pP S

X
Passons aux coordonnées polaires, en posant:

y = rcosf ; z = rsinf

O=r=yY@—2a?): (0=0=2n
-
diva = o(r, ¥y, 3) .
Il vient alors:
2= ‘/P2—372

I = jpdxfdefp(x, rcosf, rsinf)rdr .
0 0

P
On a d’ailleurs par la formule de la moyenne:

Vp2-z? Vp2—z2

fcp(x, rcosf, rsinl)rdr = o(x, r cosb, rosine)frdr
0 0

r 6tant une certaine valeur de r comprise entre 0 et V/p% — z2.
Finalement on voit que I’on peut écrire:

+p
I = o(x,, rycos by, r,sin b)) /.‘n:(p2 — 2% dx
—P
ou:
4

I = §7rp3cp(xo, ro cos B, ry sin 0 )

avec:
fxoléP \"0<P°
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Donc le rapport de I au volume de la sphére 3 qui est égal a:
¢ (x,, rycosb,, rysinf)
tend bien vers une limite égale & |
(0, 0, 0)

d’aprés la continuité de . Or, cette limite n’est autre {Iue la
valeur de -
div (V A 7)

au point M, et le théoréme se trouve ainsi établi.

Application. — Soit ‘l’expression ;
w = Px, y, z )dx—{—Q(x Y 2)dy + R(x, y, 2)dz ;

pour qu’elle représente la dszerentaelle totale d’une fonction

F(z,y, z) il faut et il suffit que le vecteur V de composantes P,Q, R
ait un rotationnel identiguement nul.
En effet, pour que o soit une différentielle totale, il faut et il
suffit que son intégrale le long de tout contour fermé soit nulle.
| Alors cela aura lieu en particulier le long de tout cercle I' de
| centre M(x, y,, z) contenu dans le plan

xXx = x, .

Donc divy, % existe et est nulle'; il en est de méme pour

divey, V div V et d’apreés ce que nous avons vu le vecteur V

admet un rotationnel de composantes diviy V, divey) V, div(y V,
identiquement nul.

Inversement si le rotationnel est nul, la Formule de Stokes
montre que

dex—{—Qdy—l—Rdz=fm ‘
C

est nulle le long de tout eontour fermé sans points anguleux;
cette derniére restriction pouvant étre levée quand C ne présente

1 On a en effet le long de T ;
f%dl_\i = f-{fllzds
r r

n étant le vecteur unité de la normale al V, le vecteur y R (x0, ¥, 2) — z Q(xo, v, 2),
déja rencontré,
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qu'un nombre fini de points anguleux grdce & lartifice qui
consiste & arrondir ces singularités; et cela suffit pour que o
soit la différentielle d’une fonction dF.

En résumé, la condition nécessaire et suffisante pour que

-> -»
~Pdx + Qdy + Rdz = V.dM

soit une différentielle totale est que 'on ait:

-

.3 . | T e v 0
dlv(x)V = 0, dlv(y)V = 0 ; dlv(z) = 0 .

12. Conséquences du théoréme fluzx-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences
intéressantes que ’on peut tirer de la généralisation donnée par
M. Bouligand du théoréme flux-divergence. Placons-nous dans le
cas du plan et soit Ozy un systéme d’axes orthogonal et normal.
Donnons-nous une fonction f(z) et considérons le vecteur:

Z f(x)

supposons qu’il admette une divergence -circulaire centrée
continue: Je dis alors que f (x) admet une dérivée continue et que
l'on a:
f'(x) = divaf(z) .
Soit en effet C le contour rectangulaire limité par les droites
Oz, £ = x,, y = a, Oy. Nous avons S étant le domaine de ce

rectangle:
fdlvxf ff(xx vds

Le long de Oz et du coté opposé & Oz, on a:

-p

y = 0

84

l:e long de la paralléle a Oy d’abscisse ‘xO:

- -> - ]
p = x.x =1

)

ét le long de Oy:
Sl : }3=_;;=—1
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On a donec:
ds = af(x,) — af(0) .
Or:

faiv;’/'(a-) = o [diva f(x)da
S 0

car div f(z) dépend de x seul. On a donc :
fla) — £(0) = [ diva f(z)da

x, étant arbitraire, nous en tirons la conclusion annoncée. Ceci
posé, soit I' un cercle de centre (x,, 0) et de rayon p. Nous avons:

. > .1 = -
diva f(x) = llm;—2 xf(x).vds .
HPI‘
Or:
"::g_xox__{_y—yo-'
p e
Done
- x— x,
xr .v = = COS «
e
et
o ds = pda ;
donc

2
div f(z) z = lim ;;I—P f(x, + p cosa) cosada
o=0
' 0
et nous avons le théoréme suivant:
St £ (x) est telle que la quantité:

2
1
;t—p«O/‘f(m -+ p cos a) cos a da

reste bornée en valeur absolue ausst petit soit p, et tende vers une
limite (x) continue quand p tend vers zéro, alors [(X) admet une
dérivée continue égale ¢ o(X).

On voit d’ailleurs facilement que si f'(x) existe la quantité
ci-dessus a une limite qui lui est égale. Il est clair que le théoréme
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ci-dessus est susceptible de nombreuses variantes, puisque pour
définir le jacobien on peut prendre n’importe quelle courbe
fermée sans points doubles entourant le point x et tendant vers
lui.

Prenons en particulier un jacobien carré. Nous aurons a former
la quantité: - |

flz +¢) — flx—p)
2p

et I’on voit que si elle est bornée en valeur absolue et tend vers
une limite continue quand p tend vers zéro, le quotient

[+ p) — fla)
P

qui définit la dérivée admet lui aussl une hmlte egale ala prece-
dente.

Prenons encore un jacobien carré, mais en prenant le point x
comme point de concours des diagonales, qui seront paralléles
respeotiﬁement a Oz et a Oy, et I’on sera amené & faire les hypo-
théses énoncées plus haut sur l’expressmn remarquable:

comme le montre un calcul facile.

Enfin, pour terminer, nous pouvon% remarquer que rien ne
nous obligeait a rester dans l’espace a 2 dimensions, et 'on
pouvalt par. exemple considérer la dlvewence sphemque centrée
dex]‘( ), ¢’est-a-dire : ~

f f(2)

'g"P =

lim

2 étant une sphére de centre x et de rayon p. Un calcul facile
permet d’écrire cette expression:

, llm__ffx—}—pcoqa) stada,:

o:O T
i

on en tire les mémes conclusi‘ons que précédemment.

[’Enseignement mathém., 27 année; 1928. 4
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