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JACOBIEN, DIVERGENCE, FORMULE DE GREEN
PAR

M. Georges Bouligand (Poitiers).

ROTATIONNEL ET FORMULE DE STOKES
PAR

M. André Roussel.

Le but de cet article est d'exposer comment on peut généraliser
la définition de certains opérateurs du Calcul vectoriel, de

manière à conserver un sens aux identités fondamentales
relatives au changement de variables dans les intégrales multiples,
au théorème flux divergence, etc., dans plusieurs cas étendus où
elles cesseraient d'en avoir un sous leur forme classique, et cela

parce que des hypothèses de dérivabilité ne seraient plus
satisfaites. Nous nous placerons, pour simplifier le langage dans le

cas de l'espace à trois dimensions.

1. — Rappel de quelques notions préliminaires L

Soit un champ vectoriel obtenu en faisant correspondre à

chaque point M de l'espace le vecteur V{M). Indiquons rapidement

comment on définit la divergence de ce champ.
Le vecteur V (M) peut être considéré comme la vitesse d'une

particule d'un milieu continu qui se trouve en M à un instant
déterminé t\ on peut alors lui faire correspondre biunivoquement
la transformation infinitésimale permettant de déduire de la
configuration du milieu.au temps t sa configuration au temps
t + dt. Il est donc indiqué de faire dériver la théorie des champs
vectoriels de celle des transformations. Pour cela, nous passerons

i Voir les « Leçons de Géométrie vectorielle « de G. Bouligand (Vuibert), troisième
partie, paragraphes 154 à 174.

Les nos 1 à 8 de ce mémoire formaient l'introduction d'un cours sur les fonctions
harmoniques, professé à l'Université de Cracovie pendant le 1er trimestre de l'année
scolaire 1925-26. Les noa 9, 10, 11, 12 sont entièrement dus à M. André Roussel. (G. B.)
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; par l'intermédiaire des transformations finies et nous introdui-
j rons le Jacobien comme limite du rapport de deux volumes

I correspondants, lorsque le diamètre de l'un tend vers zéro. La
| divergence sera la notion limite du jacobien, obtenue en passant
I du cas des transformations finies à celui des transformations
j infinitésimales. C'est ce que nous allons préciser.

2. — Propriétés locales d'une transformation finie.

j Soit une transformation finie:

j p % M (1)

| qui à chaque point M d'un premier espace â>M fait correspondre
continûment un point P d'un second espace 3P 1. Le mode de

symbolisme (1) convient bien pour l'étude des propriétés de la
j transformation indépendantes des dimensions et correspond très
] exactement à la notation habituelle

j y ^ /»
] désignant une fonction d'une variable, par laquelle on établit une
| correspondance liant à certains points de xx' certains points de
| yy' (cas d'une dimension).
| Reprenons la transformation continue définie par (1). Soit

M0 un point particulier de <êM et soit P0 son transformé. La
transformation étant continue, si M est voisin deM0, P sera voisin
de P0. Une hypothèse naturelle et fréquente consiste à supposer
l'existence d'une transformation linéaire tangente en chaque
point M0 de la région considérée dans L'introduction d'axes
de coordonnées nous amènerait à remplacer l'équation (1) par
trois équations scalaires:

X f(x, y, z) ; Y g(x, y. z) Z h (x y, z) (2)

La transformation linéaire tangente est celle qui au point M0

; fait correspondre P0 et qui au vecteur dM(dx, dy, dz) fait corres-
» —>-
f pondre le vecteur dP(dX, dY, dZ), d'origine P0 et dont les
S composantes dX, dY, dZ sont les différentielles totales des fonc-

i L'espace n'est pas nécessairement distinct de l'espace û?m
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tions (2). Lorsque la transformation linéaire tangente existe

en chaque point M d'une région R de <§M et lorsqu'elle dépend
continûment de M dans cette région, on peut alors établir le

théorème suivant:
Soit (M0, P0) un couple de points qui se correspondent dans &u

SP et par la transformation Soit:

1 *0 1 Vo ' -o

<T ce s?
°*o &y- 8z0

h h h
XQ Vo *0

le déterminant de la transformation linéaire ®Mo tangente à

® en M0. Supposons que ce déterminant ne soit pas nul, c'est-à-
dire que ©Mo ne soit pas dégénérescente. On peut alors définir
un certain voisinage de M0 et un certain voisinage de P0 entre
lesquels la correspondance définie par (1) s'exerce d'une manière
biunivoque. A un volume infiniment petit et infiniment voisin de

M0, correspond un volume infiniment petit et infiniment voisin
de P0; le rapport du second au premier tend précisément vers
J (M0). Cette fonction J (M), limite du rapport de deux volumes
correspondants, définie indépendemment du nombre des dimensions,

se réduit à la dérivée dans le cas d'une dimension. Notons
encore que 'J (M) est définie, non seulement en valeur absolue,
mais encore en signe, celui-ci indiquant si l'orientation des figures
voisines de M0, rapportée aux axes x, y, z concorde ou non avec
l'orientation des figures voisines de P0, rapportée aux axes
X, Y, Z h

r Moyennant ces hypothèses, une annulation du jacobien le long d'une surface S prise
dans &vl et déterminant dans son voisinage deux régions RM et R^ entraîne en général

dans l'espace <®p la circonstance suivante: soit s la transformée de S qui sépare aussi
son voisinage en deux régions Rp et Rp. Les points M voisins de S, de part et d'autre de

S (dans RM et R^) ont pour transformés des points P voisins de s et situés d'un même
côté de s (p. ex. dans Rp exclusivement). Il y a là une propriété indépendante du nombre
n des dimensions. Dans le même ordre d'idées citons la suivante qui généralise le théorème
de Rolle : soit la transformation P ©(M) soumise à toutes les hypothèses précédentes,
et soit un domaine D de l'espace limité par une surface d'un seul tenant, douée
d'un champ continu de normales. Supposons que tous les points de cette surface aient
même transformé P0. Dès lors on peut trouver dans D au moins une surface sur laquelle
le jacobien s'annule. Pour le démontrer, à l'exemple de ce qui se fait dans le théorème
de Rolle, on considérera la surface qui délimite le domaine a recouvert par les transformés
des points de D. Elle provient d'une certaine surface du premier espace, sur laquelle il y
a précisément annulation du jacobien, avec changement de signe.
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Remarques. — Nous venons d'employer la locution volume.
Par volume, nous entendons ici un domaine ensemble d'un
seul tenant dont chaque point peut être pris pour centre d'une
sphère dont tous les points appartiennent à l'ensemble) dont
la mesure intérieure et la mesure extérieure sont égales. Ces mesures
sont définies à l'aide d'un réseau binaire progressif (formé à

partir d'un cube initial arbitraire, du pavage régulier de l'espace
obtenu en lui juxtaposant des cubes égaux, et de tous les pavages
analogues qui s'en déduisent par subdivision binaire des arêtes,
indéfiniment répétée). La mesure intérieure est alors la borne
supérieure des volumes polyèdres intérieurs au domaine donné et
obtenus par sommation de cubes du réseau indéfini, tandis que
la mesure extérieure est la borne inférieure des volumes des

polyèdres englobant le domaine et obtenus aussi par sommation
de cubes du réseau indéfini. Le domaine donné est un volume
seulement quand ces bornes sont égales.

3. — Opportunité d'une définition directe du jacobien.

Il n'est pas nécessaire de passer par l'intermédiaire de la
transformation linéaire tangente pour définir le jacobien. L'hypothèse
d'existence de cette transformation introduit à la généralité
d'inutiles restrictions. Supposons que les formules (2) soient du

type suivant :

X * Y y Z z + *(*, y)

Nous aurons une transformation conservant les volumes, en

grandeur et en signe. Il est donc naturel de lui attribuer un
jacobien égal à + 1. Cependant, si la fonction <p(x, y) n'a pas
de dérivées, il n'y aura pas de transformation linéaire
tangente.

Il y a donc lieu de définir le jacobien directement. On peut
proposer diverses définitions, exigeant chacune une revision des

propositions ci-dessus rappelées, notamment du théorème relatif
à la réversibilité locale de la transformation. En réalité, nous
n'aurons ici à raisonner que sur des transformations intégralement
biunivoques (déformations), à la classe desquelles les transformations

infinitésimales appartiennent nécessairement.
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Le moment est revenu de préciser nos hypothèses sur la
transformation

a) A une région dvM de <SM, elle fait correspondre biunivoque-
ment et continûment une région dvP de &P.

b) A toute sphère intérieure à ÛlM correspond effectivement un
volume intérieur à dvP. Soit v le volume de la sphère, v' son

correspondant.
c) Soit un point fixe intérieur à <?vM; prenons une sphère

infiniment petite de centre M; alors le rapport
v— tend vers une

limite déterminée J (M).
d) Lorsque M décrit une région quelconque, strictement inté-

v'
rieure à tftM, la famille des fonctions -- de M (dépendant du

paramètre v) est bornée dans son ensemble, cette borne s'appli-
quant nécessairement à J (M).

e) J (M) est continue à l'intérieur de tfvM.

Nous appellerons J (M) le jaeobien sphérique centré, locution
proposée par M. Wilkosz et qui a l'avantage de rappeler les

conditions particulières de la définition, favorables dans certaines
recherches, par exemple pour l'obtention de l'harmonicité
moyennant des hypothèses simples et bien conformes au mode
d'invariance du laplacien 1 qui sera défini comme une divergence

sphérique centrée (n° 7).

4. — Valeur du volume après une déformation finie.

Dans tout ce qui suit les intégrations ont lieu au sens de
M. Lebesgue. Des hypothèses c) et d) nous déduisons d'abord ce
résultat : à tout volume (intérieur à (R>m) du premier espace
correspond un volume du second.

Il suffit pour cela d'établir que le transformé d'un ensemble de
mesure nulle est aussi de mesure nulle. Servons-nous d'un

r Dans d'autres questions, il pourra être plus avantageux de faire usage d'un jaeobien
sphérique non centré, ou encore d'un jaeobien cubique (locutions qui se comprennent
d'elles-mêmes). Notons que pour le théorème de variance des intégrales multiples, qui
va nous occuper, et qui appartient en réalité à la géométrie linéaire, il est indiqué
d'utiliser une forme de jaeobien obtenue en substituant aux sphères de centre M des
volumes v tels que la figure (M, v) reste homothétique d'une figure fixe. Il n'y a d'ailleurs
qu'une simple transposition à faire dans la démonstration qui va être donnée, en
remplaçant les sphères de centre M par les volumes v soumis à l'hypothèse précédente.
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réseau binaire progressif. Il nous permettra d'enfermer l'ensemble
dans une infinité de cubes dont la somme des volumes est
arbitrairement petite. On peut énoncer la même propriété pour
la somme des volumes des sphères circonscrites à ces cubes;
or, de l'hypothèse d) nous tirons une limite supérieure pour la
somme des volumes transformés des cubes, égale au produit
d'un nombre fixe par la somme des volumes des sphères
précédentes. Le résultat est donc établi. En même temps, il est
clair qu'à tout nombre positif e, il est possible de faire
correspondre un nombre positif S tel que l'inégalité:

mes. d'un ens. de ÛLm <C $

entraîne :

mes. ens. trans f. < £

c'est ce qu'on exprime en disant que la transformation © est
absolument continue.

Il s'agit maintenant de prouver qu'à un volume quelconque
V, complètement intérieur à dlM, correspond un volume V'
(nécessairement intérieur à dvP) donné par la formule:

Y' l'J(M) d(3)
V

Pour cela, nous tablerons sur la possibilité de trouver à

l'intérieur de chaque volume un système d'une infinité dénom-
brable de sphères, mutuellement extérieures, et dont l'ablation ne
laisserait subsister qu'un ensemble de mesure nulle. Admettons
cette possibilité, qu'il suffirait d'établir pour un cube, le volume
pouvant être obtenu au moyen d'une infinité dénombrable de

cubes d'un réseau indéfiniment progressif.
En vertu de ce lemme, nous pourrons trouver dans û un

premier ensemble E de sphères, conformément aux conditions
indiquées. De passons à un ensemble analogue E2, en prenant
chaque sphère de E1? enlevant de celle-ci une sphère concentrique
et de rayon moitié, et appliquant le lemme au volume restant.
En répétant indéfiniment ce procédé, nous aurons une suite:

Ej E2, Ej,
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d'ensembles de sphères dont les centres formeront des ensembles

désignés par
#1 é?2

L'ensemble eu contient tous les e{ d'indices i < k. L'ensomble

e^ formé de tous les points des eh est dénombrable et partout
dense.

Soit maintenant la fonction J&(M) définie dans les sphères de

E& de la manière suivante : dans chaque sphère dont le volume est

o, nous lui attribuons la valeur constante ~ Cette fonction

est partout définie dans V, sauf sur un ensemble de mesure
nulle où nous pouvons la prendre égale à J(M). L'intégrale de

la fonction ainsi construite a évidemment pour valeur le volume

V', quelque soit k. Donc, lorsque k croît indéfiniment, elle tend
vers une limite égale à V'. Or, en vertu de la continuité de J (M),
les fonctions J&(M) qui sont bornées d'après g?) tendent vers
J(M) dans tout V lorsque k croît indéfiniment. La formule (3)

apparaît alors comme une conséquence immédiate de ce théorème

classique de Lebesgue: Vintégrale de la limite dans le champ
des fonctions bornées est égale à la limite de V intégrale.

Notons que le raisonnement présenté sous cette forme ne

peut se passer de l'hypothèse de la continuité de J (M) :

l'ensemble sur lequel nous savons d'une manière immédiate (c'est-à-
dire sans invoquer la continuité) que J&(M) tend vers J(M) se

compose de l'ensemble dénombrable e^ et d'une suite dénombrable

d'ensembles de mesure nulle omis à chaque application
de ce lemme. La limite n'est donc assurée sans la continuité que
sur un ensemble de mesure nulle. Mais, si l'on fait l'hypothèse de

la continuité, entraînant l'uniforme continuité, on voit aisément

que cette limite est partout assurée.

5. — Conditions de validité de la formule (3).

Le champ de validité de la formule (3) est en réalité beaucoup
plus large que le champ défini par les hypothèses a, è, c, d, e.

Cette formule subsiste en réalité dans les conditions les plus
générales pour lesquelles le second membre a un sens, c'est-à-
dire lorsque la fonction J (M) existe et est sommable. La dé-

L'Enseignement mathém., 27e année, 1928 3
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monstration conduit alors à considérer l'intégrale du second
membre de (3) comme une fonction additive et absolument
continue de l'ensemble Y des points auxquels on l'étend. Dans
ces conditions, la différence:

Y-fJ(M)<*o>m
V

est aussi une fonction additive et absolument continue, dont la
dérivée sphérique centrée est partout nulle. Le problème consiste
à en déduire que cette fonction est nulle. Pour les éléments de la
solution voir Lebesgue, Ann. Ec. Norm. 1910, et de La Vallée-
Poussin, Intégrale de Lebesgue, fonctions d'ensembles, classes

de Baire, chap. IV.

6. Conséquences delà formule {3).

Reprenons nos hypothèses simplificatrices de la continuité
de J (M); on déduit qu'il y aura nécessairement dans tout

V'volume V des points où J (M) sera égale à y (résultat signalé

par Darboux, dans des conditions plus particulières, et comparable

à la formule des accroissements finis, dans le champ des

; fonctions monotones à dérivée continue). De ce fait, il résulte

que la limite du rapport de deux volumes correspondants est
j J (M) lorsque le premier de ces volumes est infiniment voisin
j de M (sans plus).
j II n'y a alors aucune difficulté à déduire de ces résultats le
| théorème général de variance d'une intégrale multiple:

/*(P)^P /*(S(M))J(M)<J«om (4)

y v

| théorème qui d'ailleurs a une signification physique intuitive et

exprime la conservation de la masse par élément; lorsqu'on
désigne par / (M) la densité de la matière qui existe au point M
du volume V, par g (P) la densité qui régnera après la déformation,

j au point P correspondant, de V', on aura nécessairement :

\ *

f(M)dwu S(pWwp
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d'où:
du>„ _

/•(M) gW-r-1-
atoM

Le fait que la limite J (M) est valable indépendamment. de

la forme des éléments de volume nous dispense d'insister sur la
démonstration de la formule (4).

7. Le théorème flux-divergence.

Revenons aux champs vectoriels, ou, ce qui est équivalent'
aux transformations infinitésimales. Nos hypothèses seront ici
les suivantes:

af) Le champ est défini et continu dans une certaine région (K1.

q) Soit M un point fixe intérieur à di, décrivons une sphère de

centre M, de volume v et soit <p le flux du champ sortant de

cette sphère. Le rapport ^ tend vers une limite quand v tend

vers zéro: cette limite peut s'appeler divergence sphérique centrée.

dt) ^ reste inférieur à un nombre fixe, cette limitation s'appli-

quant nécessairement à la divergence.
ef) La divergence est une fonction continue de M.
Nous avons présenté ces hypothèses en les faisant correspondre

très exactement aux hypothèses admises dans la démonstration
de (3). Seulement ici, l'hypothèse bf) disparaît: elle est remplie
ipso-facto en vertu de la continuité du champ vectoriel.

L'hypothèse b) consistait en effet à exprimer qu'un volume
sphérique correspond effectivement à un volume; l'hypothèse b-f)

consistera donc en ce que, notre champ étant regardé comme
un champ de vitesses, le volume du fluide contenu dans une
sphère à l'instant t admet une dérivée par rapport à t. Or, cette
dérivée est justement le flux du champ sortant de la sphère.

Soit donc le champ vectoriel Y (M) satisfaisant aux hypothèses
précédentes. Soit un volume û intérieur à la région di et limité
par une ou plusieurs surfaces, possédant chacune un champ
continu de normales, et dont l'ensemble sera désigné par 2.

1 Nous verrons un peu plus loin que l'hypothèse 5i) qu'on déduirait de b) est remplie
ipso facto.
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La masse du fluide qui occupe il à l'instant t a pour volume une
certaine fonction du temps. Le théorème de variation du volume
exprimé par la formule (3) nous apprend que cette fonction du

temps a pour dérivée:
dû p •*•

—— / div V rfw
dt J

ü

D'autre part, on a également :

dû Vv<*°
E

v désignant le vecteur unité de la normale extérieure en un point
de 2. D'où le théorème flux divergence

/div^ OJ fV.T de (5)

n e

En réalité, en conservant les mêmes hypothèses sur 2, on
pourrait montrer (a la base des résultats signalés sans démonstration

au n° 5) que cette formule est valable dans des conditions
beaucoup plus générales: il suffît de supposer l'existence et la
sommabilité de div. V.

8. Application.

Il est clair que tout ce que nous venons de dire dans le cas de

l'espace à 3 dimensions s'applique, avec des modifications
évidentes au cas où les vecteurs considérés appartiennent tous au
même plan. Le jacobien sphérique centré par exemple, sera
remplacé par un jacobien circulaire centré, et nous aurons la
relation :

J div V da V ds (6)

S c

C étant une courbe fermée à tangente continue sans point
double, v la normale extérieure, da l'élément d'aire.

Soit alors P (x, 2/), Q (x, y) deux fonctions données, V le vecteur
de composantes Q et — P; il est clair que l'on a:

j* P dx -{• Q dy — Ç Y v ds

C c



FORMULES DE GREEN ET DE STOKES 37

Par suite, pour tout contour fermé ä tangente continue
sans point double C parcouru dans le sens direct:

J' P dx -j- Q dy j* divY.rfcj (7)

C s

on en tire le théorème suivant, généralisation du théorème
classique sur l'intégrale des différentielles exactes:

La condition nécessaire et suffisante pour qu'une intégrale
curviligne

j* V dx -f- Qdy
c

soit nulle le long de tout contour fermé sans point double est que la
•

divergence circulaire centrée du vecteur : xQ — yV soit identiquement

nulle dans la région du plan envisagée1.

D'après (7) cette condition est suffisante; elle est aussi
nécessaire puisque le long de tout cercle de centre M l'intégrale

J* (xQ — y P) u ds

c

étant nulle par hypothèse, il en sera de même de son quotient
par 7zp2 quel que soit p; d'où existence en chaque point d'une
divergence circulaire centrée nulle.

[9. Définition du rotationnel.

Pour définir le rotationnel, nous poserons:

diy (Y j\ u) — a rot Y (8)

—f

où u désigne un vecteur unitaire de direction quelconque, mais
fixe 2. On voit immédiatement que si les composantes de V ont
des dérivées du premier ordre par rapport à x1 y, z, le rotationnel
ainsi défini coïncide bien avec le rotationnel classique. Dans le

1 L'énoncé suppose la continuité de la tangente. On pourrait d'ailleurs aisément,
à la faveur d'un théorème de M. Lebesgue, étendre le résultat aux courbes recti-
fiables.

2 Pareillement, on pourrait unifier la définition du gradient et de la divergence et
aboutir à la notion de gradient sphérique centré en utilisant l'identité

grad w. div (fu).
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cas contraire pour justifier la définition fournie par l'équation (8)
il faut :

1° Que V A ^ ait une divergence (au sens généralisé défini
plus haut).

2° Que (8) définisse alors bien un vecteur et un seul. Examinons
le premier point: la condition énoncée sera remplie si l'intégrale:

1

4
3

•ô *P8s
/(V (9)

prise sur la sphère S de centre M et de rayon p admet une limite,
quand p tend vers zéro, continue avec M, et reste inférieure quel

que soit p à un nombre fixe À. Or, on peut écrire (9), en
désignant par m le volume de S :

— f (y A V) d* (10)
us J

s

—3*-
Alors 1° sera satisfaite si la longueur du vecteur W(/),M)

1 /» -/ (- A v)4
*p»s3

reste inférieure à A quel que soit p et M, et si W tend vers une
limite continue quand p tend vers zéro. On aura alors d'après (8),

(9) et (10):

rot V lim —- Ç (v /\ Y) da ; (11)
p=o J

S

cette relation (11) définit alors complètement le rotationnel
et la condition 2° est bien remplie.

10. Formule de Stokes.

Nous allons montrer que l'existence et la continuité du
rotationnel généralisé que nous venons de définir dans le

paragraphe précédent suffisent pour assurer l'exactitude de la

formule de Stokes:

J*V.dM J* rot Y v d<s (12)

c s

2 étant une portion de surface admettant un champ de normales
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continu, limité par une courbe fermée simple G admettant
une tangente continue.

Nous allons commencer par établir (12) en prenant pour G un
contour triangulaire Ax, A2, A3 : 2 sera alors la portion de

plan intérieure à ce triangle, v sera un vecteur fixe u perpendiculaire

au plan A1A2AS et tel que l'observateur disposé suivant u

voit un mobile décrivant AjA^g tourner dans le sens d'orientation

des axes de coordonnées. Nous voulons calculer l'intégrale:

1—1 rot V u d<s ;

s

elle est, d'après (8) égale à:

J* div (V /\ u) dv ;

s

transformons cette intégrale de surface, en intégrale de volume
à l'aide de l'artifice suivant : formons un prisme droit de bases

(Aj, Ag, Ag), (Al7 A2, A3) distantes d'une quantité infiniment
petite l. Nous ferons de plus:

AjAj =s AgA2 AgA3 X2u

On a alors, à un infiniment petit près:

I Jfdiv(V A «)du
n

û étant le domaine prismatique, du l'élément de volume. Mais
le théorème flux-divergence nous donne:

1

s

S étant la surface du prisme, v la normale extérieure à S. Mais on
peut encore écrire:

1 }-/(2
S
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Cette intégrale se scinde en 5 intégrales partielles étendues

respectivement aux deux bases et aux trois faces latérales.
Les deux premières sont nulles car on a alors:

u/\v=uf\u 0 ou u /\ v — u, f\ (— u) — 0

Considérons donc la portion 1± de I relative à la face

A1AaAaA^. Nous avons:

•+ •+ A. A„
11 A " TT

D'autre part, soit dM un vecteur infiniment petit colinéaire
et de même sens que AXA2. Nous avons:

dS /. dM

et nous pouvons écrire, à un infiniment petit près:

ou encore:

/- -*
V.dM

En raisonnant de même pour Il5 I2, I3, on voit immédiatement
que l'on a:

/-* -V.dM
c

C étant le contour A^gAg.
Il est alors facile d'établir la formule (12) pour toutes les

surfaces 2. En effet, en vertu des hypothèses relatives à la continuité
du champ de normales à 2 et à celle du rotationnel on peut
trouver une surface polyédrale 2n inscrite dans 2, limitée par
un contour Tn inscrit dans T telle que la différence



FORMULES DE GREEN ET DE STOKES 41

tende vers zéro quand naugmente indéfiniment, ainsi que:

/-*
/» - -v. dM - Jv. cOAn

r r„
Or:

/7o^Y.:nd,tl=f\.dMn ('3)
v rti A n

car il est clair que l'on a:

J"v.dMr= l^
r nJlci

Q étant une face triangulaire quelconque de 2n, car tout côté

appartenant à deux triangles à la fois de 2n sera parcouru dans
-f ->

les deux sens, et les intégrales de V.dM correspondantes se

détruiront; finalement il ne restera que les intégrales relatives
aux côtés de la courbe limite rn. On déduit alors immédiatement
l'identité (12) de l'équation (13) en tenant compte de ce que nous
avons dit plus haut. Le théorème de Stokes se trouve ainsi établi.

Remarqué: La formule de Stokes montre que l'intégrale:

—>- -*•

rot V da

prise sur toute surface fermée 2 est identiquement nulle. On en

déduit alors facilement que le champ vectoriel rot V, défini par
l'équation (11) admet partout une divergence qui satisfait à

l'identité remarquable :

div (rot V) 0

comme dans le cas classique où les composantes de V auraient
des dérivées des deux premiers ordres.

11. Composantes du rotationnel.

Nous allons établir le théorème fondamental suivant :

Soit le vecteur :

Y X P(*, y, Z) + y Q (^ y\ z) + 1 R(ar, y, z)
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et M (x0, y0, z0) un point quelconque de Vespace de coordonnées

(x0, y0l z0). Considérons les vecteurs:

chacun d'eux admet en M une divergence circulaire centrée,
et les valeurs de ces divergences sont respectivement égales aux

composantes en M du rotationnel de V.
Le théorème est bien exact dans le cas où P, Q, R sont déri-

vables par rapport à (x, y1 z) ; en effet ces divergences sont :

Nous allons montrer qu'il est encore vrai dans le cas actuel
plus général.

Soit G un cercle de centre M, de rayon p contenu dans le plan
mené par M perpendiculairement à Ox.

La formule de Stokes nous donne:

v1 2/R(«r0> y>%) — *QK> y> z)

v2 Z ?{x, y0, z) — xR{x, y0, z)

V3 xQ(x, y, z0) — y P (x, y, z0)

öR
__

öQ öP öR öQ öP

by bz ' bz bx
*

bx by

/* -¥ —>- -I v rot V da

S c

Or:

x ; V dM [y Q (x0 y z) + z R (x0 y z) ]

Soit n la normale au cercle G dirigée vers l'extérieur. On a

facilement:

[yQK' y> *) + y> »)! =» [2/RK' 2/>*) — *QK> 2/»

s étant l'arc de C. On a donc:

s c

ce qui peut encore s'écrire:

—>- ^ 1 /» - —>- ^ —>- -* !_/»-«#. rotM V + — J x • Crot V — rotM -1 ~ S J ^ u ds

S C
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L'expression:

~ J x [rot V — rotMV] d<s

tend vers zéro quand le rayon du cercle G tend vers zéro; en

effet, elle est plus petite que:

— max surcj X Xjj j J% d<5 — max suvcj X X. i

M I

en désignant par X, Y, Z les composantes de rot V. On a donc

finalement:

X X r£tMV, divM Vj

Y y .^ÎmY divMY2

Z z rot Y div V®
M M 3

Nous écrirons encore ces équations :

X - diV)v
Y div(y)Y

Z div(î)Y

les symboles figurant dans les seconds membres ont une
signification évidente d'après ce que nous avons dit plus haut. On a
d'ailleurs:

div(*) v div (V A *)

div(/ div(VA y) (14)

div{z)V div (V A z)

car, d'après la relation:

div (Y /\ u) u rot Y (8)'

dont nous sommes partis pour définir le rotationnel, on a bien:

X div (Y /\ ~x) ; Y div (Y /\ y) ; Z div (Y /\ z)
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Remarquons en passant que l'existence de ces trois dernières
divergences entraîne celle du rotationnel, en vertu de l'identité
(8'). Nous allons de même établir la proposition suivante:

Si un champ vectoriel V admet trois divergences partielles il
admet aussi un rotationnel dont les composantes sont :

x div(*)V ; Y div(,)Y ; Z div(s)v

D'après la remarque précédente il suffit d'établir que

div (V /\ x) div (V /\ y) div (V /\ z)

existent et satisfont aux équations (14). Calculons donc

div (V A ^)- On a:

v A x yR (x » y > z) — zQ_(x, y, z)

d faut calculer l'intégrale:

I J* (y R — zQ) v de
S

étendu à la sphère 2 de centre M qui sera pris pour origine des

axes de coordonnées, et de rayon p. Or:

- -v An -f~

en désignant par n la normale extérieure au cercle Cx intersection
de la sphère 2 avec un plan d'abscisse x, perpendiculaire à M#.
On a:

- - Vp2-.
v n — À —-

P

et:

t r Vp2 — *2
1 J "^4 (y.

Or, en désignant par ds un élément de longueur du cercle Ca,

nous pourrons écrire :

p dx ds
d<3 —_

V p2 — x2
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et nous avons l'identité suivante, facile à établir:

i= rpvp2—*2 ?dx

4 p

Or:

J* Yj. n ds — J* divXV dydz

^x S#

Sx désignant l'aire du cercle Cx. Il vient donc:

+P

I J dx J dixx\ dy dz

—P Sx

Passons aux coordonnées polaires, en posant:

y — r cos 6 ; z r sin 6

(0 ^ r ^ Vp2 — x2) ; (0 ^ 6 ^ 2ic)

div^, V o (x, y y z)

Il vient alors:
+f> ^p2-y:2

l — J* dx J* d6 J*®(x » r cos 0 r sin 0)

-p oo
On a d'ailleurs par la formule de la moyenne :

/f)2_a:2 \/p2-x2
j*<p (oc r cos 0 r sin 0) r dr cp (x rQ cos 0 rQ sin 0) j*r dr
0 0

r0 étant une certaine valeur de r comprise entre 0 et \/p2 — x2.
Finalement on voit que l'on peut écrire:

+P
1 K » r0 cos 0o » ro sin eo) f n (P2 — x2) dx

-P

ou:
4

I -gKp3<f(x0, cos 0o r0 sin 0O)

avec:
lxo\ - P
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Donc le rapport de I au volume de la sphère 2 qui est égal à:

rQ cos60, r0 sin 0O)

tend bien vers une limite égale à

?(0, o, 0)

d'après la continuité de y. Or, cette limite n'est autre que la
valeur de

div (V /\ x)

au point M, et le théorème se trouve ainsi établi.

Application. — Soit Vexpression:

co P [x y, z) dx + Q (x y, z) dy + R [x y, z) dz ;

pour qu'elle représente la différentielle totale d'une fonction
F (x, y, 2) j7 faut et il suffit que le vecteur Y de composantes P, Q, R
ait un rotationnel identiquement nul.

En effet, pour que &> soit une différentielle totale, il faut et il
suffit que son intégrale le long de tout contour fermé soit nulle.
Alors cela aura lieu en particulier le long de tout cercle T de

centre M(^, z0) contenu dans le plan

X XQ

Donc div(a) Y existe et est nulle1 ; il en est de même pour
div(y) V, div(Z) V, et d'après ce que nous avons vu le vecteur V
admet un rotationnel de composantes div^V, diV(y>V, div(2)V,
identiquement nul.

Inversement si le rotationnel est nul, la Formule de Stokes

montre que

J*Pdx Q dy -j- Rdz J* w '

c

est nulle le long de tout contour fermé sans points anguleux;
cette dernière restriction pouvant être levée quand G ne présente

1 On a en effet le long de r ;

V'.dM J Y1.nds
r r

—f

n étant le vecteur unité de la normale à r, Vj. le vecteur: y R(aco, y, z) — z Q(xq, y, z),
déjà rencontré.
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qu'un nombre fini de points anguleux grâce à l'artifice qui
consiste à arrondir ces singularités; et cela suffit pour que &>

soit la différentielle d'une fonction d¥.
En résumé, la condition nécessaire et suffisante pour que

V dx -j- Qdy + Rdz V. dM

soit une différentielle totale est que l'on ait:

diV)^ 0 d{y(y)V 0 î div(*)^ 0 *

12. Conséquences du théorème flux-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences
intéressantes que l'on peut tirer de la généralisation donnée par
M. Bouligand du théorème flux-divergence. Plaçons-nous dans le

cas du plan et soit 0xy un système d'axes orthogonal et normal.
Donnons-nous une fonction f(x) et considérons le vecteur:

xf(x)

supposons qu'il admette une divergence circulaire centrée
continue: Je dis alors que / (x) admet une dérivée continue et que
l'on a:

f'(x) divxf(x)

Soit en effet G le contour rectangulaire limité par les droites
Ox, x x0, y ~ a, Oy, Nous avons S, étant le domaine de ce

rectangle:

J* div x f(x) — J* f(x) x v ds

S C

Le long de Ox et du côté opposé à Ox, on a:

x v 0

le long de la parallèle à Oy d'abscisse x0:

->• ->• -> -+
t

X V — x x 1 1

et le long de Oy:
', i •+>*

X V — X X 1
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On a donc:

J f(x) x v ds — af(x0) — af(0)
c

Or:

J div x f(x) a J div x f(x) dx
s o

car div x f(x) dépend de x seul. On a donc :

*0

f(xo) - f(°) fdi
0

x0 étant arbitraire, nous en tirons la conclusion annoncée. Ceci

posé, soit T un cercle de centre (;r0, 0) et de rayon p. Nous avons:
1

7?
-» 1 f* -*

div m f(x) lim -—^ J x f(x) v ds

r
Or:

Donc

: + o-

et

donc

+ x — xa
x v cos a

P

o ds — pda ;

2r
—v 1 /*

div fix) x — lim — / f(x0 + p cos a) cos a da
o=0 *pJ

et nous avons le théorème suivant :

Si f (x) est telle que la quantité :

2r
1 f*— I f(x -f p cos a) cos a da.

^P
ö

reste bornée en valeur absolue aussi petit soit p, et tende vers une
limite <p(x) continue quand p tend vers zéro, alors /(x) admet une
dérivée continue égale à ®(x).

On voit d'ailleurs facilement que si f'(x) existe la quantité
ci-dessus a une limite qui lui est égale. Il est clair que le théorème
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ci-dessus est susceptible de nombreuses variantes, puisque pour
définir le jacobien on peut prendre n'importe quelle courbe

fermée sans points doubles entourant le point x et tendant vers
lui.

Prenons en particulier un jacobien carré. Nous aurons à former
la quantité:

f(x + p) — f(x — p)

2P

et l'on voit que si elle est bornée en valeur absolue et tend vers

une limite continue quand p tend vers zéro, le quotient

f{x + p) — f[x)
P

qui définit la dérivée admet lui aussi une limite égale à la
précédente.

Prenons encore un jacobien carré, mais en prenant le point x
comme point de concours des diagonales, qui seront parallèles
respectivement a Oxet à 0y, et l'on sera amené à faire les
hypothèses énoncées plus haut sur l'expression remarquable:

r-Xo+P *o

J2 ff(x) dx ~ f f(x) dx
L-0Cq xq-P

comme le montre un calcul facile.
Enfin, pour terminer, nous pouvons remarquer que rien ne

nous obligeait à rester dans l'espace à 2 dimensions, et l'on
pouvait par. exemple considérer la divergence sphérique centrée
de x / (x), c'est-à-dire :

i r -+ -+
lim — J f(x) x v d<5

2 étant une sphère de centre x et de rayon p. Un calcul facile
permet d'écrire cette expression:

TZ

J* f(x + P c°s a). sia 2 a da. ;

0

on en tire les mêmes conclusions que précédemment.

L'Rnseiprnement mathém., 27e année; 1928. 4
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