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LES MOYENNES ARITHMETIQUES DANS LA THEORIE
DU POTENTIEL?!

PAR

Oliver D. KerrLoca (Harvard).

La notion de moyenne arithmétique, introduite dans la
théorie du potentiel par Gauss? et utilisée par ZAREMBAS3,
LEBESGUE 4, et autres, est sans doute destinée & jouer un
role d’importance croissante dans cette théorie. Je me propose

d’indiquer briévement quelques-uns des services qu’elle peut
rendre.

1. — Quelques propriétés de la moyenne arithmétique. — Soit
T un continuum ouvert, ou domaine. Soit T, I’ensemble des
points de T dont la distance & la frontiére de T dépasse le
nombre positif a, assez petit pour que T, contienne des points.
Soit W une fonction définie dans T, et intégrable. Nous appe-
lons moyenne arithmétique de W sur un cercle la fonction

1
W, (z,y) = W, (P) = mszwcls,
C

ou C est le cercle de rayon a de centre P (z, ).

On établit sans peine les propriétés suivantes de Wy :

1. Si W est bornée dans T, W, satisfait a une condition uniforme
de Lipschitz dans T,. Par exemple, si | W| < B,

2B
a

| W, (P) = W, (Q)[ £ —. %,

1 Conférence faite 4 Genéve, au Colloque mathématique des Universités de la Suisse
romande, le 28 janvier 1928.

2 Allgemeine Lehrsdize, Gesammelte Werke, V, p. 200.

3 Atti del Congr. Internat. dei Mat. IT (1908), p. 194; Bull. de 1’Acad. de Sci. de Cra-
covie, 1909, p. 197-264; Acta Math. X XXIV (1911), p. 293-316.

4 Sur le probléme de Dirichlet, Comptes rendus, t. CLIV (1912), p. 335.




i
:
i
<
:
;
!
i

THEORIE DU POTENTIEL 15

P et Q étant deux points quelconques de T, & distance h.
II. S W est untformément continue dans T, les dérivées

oW, oW,
ox ' oy

existent et sont uniformément continues dans T,. En effet, on
déduit de la définition de" W, la formule

W, 1

ox ~ mwa?
L3
C

W cos (n, x)ds , (1)
ou ¢ désigne la circonférence de C et (n, x) l'angle entre le
rayon de C et ’axe des z. Si B est une borne pour | W |, alors

<= (2)

0x | T wa

i Z)VV1 4B

I11. Si W est uniformément continue dans T, et si ses dérivées
du premier ordre sont continues dans T, on a alors dans Tq,

DVV b‘N

(3)

¢’est-a-dire que les dérivées de W, sont les moyennes arithmétiques
des dérivées correspondantes de W. Cette formule dérive de (1)
par une application de l'identité de Green.

2. — Les fonctions qui sont égales d leurs propres moyennes
arithmétiques. — Soit V une fonction intégrable et bornée dans T,
et telle que, pour tout ¢ > 0, on ait dans T,

7ca2 [deS

Il suit de (I) que V est uniformément continue dans T,,
de (II) que les dérivées du premier ordre de V existent et sont
uniformément continues dans Tys, et de (III) que ces dérivées
sont égales & leurs propres moyennes arithmétiques dans Ty,.
On peut alors appliquer aux dérivées le méme raisonnement, et
conclure, puisque a est aussi petit qu’on veut, que les dérivées
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d’ordre quelconque existent et sont continues dans chaque région
fermée appartenant & T. De plus, V est harmonique dans T.

Montrons d’abord que V est égale & sa propre moyenne arith-
métique sur les circonférences. Puisque elle est égale 4 sa propre
moyenne sur les surfaces de cercles, on a

2= r
1
12V — :f/.\'ra’rd.% .

0 0

La dérivation de cette égalité par rapport & r donne

2z
20V = %f Vrds (4)
v ()

1
V — Vds .
27 a f ’
c

qui est la relation cherchée.

De plus, si on supprime le facteur r dans (4), et qu’on diffé-
rentie ’équation trouvée par rapport a r, on a, puisque la valeur
au centre du cercle ne dépend pas de r,

2=

AY oV
0:1f0—~d.9', et f——ds:O.
poo or on
0 ¢

Maintenant, en appliquant I’équation (1) aux dérivées pre-
mieres de V, on a

D2V 02V 1 oV oV .
iy = — + ot — ,—72_/[83[ cos (n, x) + o cos (n,y)JdS

— ;_:%-2 %% ds (5)
quantité qui, comme nous venons de le voir, est nulle. V est donc
bien harmonique dans T.

En intégrant la relation (4) on voit que si V est continue dans
T et égale & sa propre moyenne arithmétique sur toute circonfé-
rence comprise dans T (et pour tout point intérieur), elle est

aussi égale & sa propre moyenne arithmétique sur tout cercle
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dans T. On a aussi une démonstration de la réciproque due a
Koebe du théoréme de Gauss: |
SiVest continue dans'T, et égale a sa propre moyenne arithmétique
sur la circonférence de chaque cercle dans T, V est harmonique dansT.
L’inégalité (2) dit que, si une fonction V est harmonique dans
T, et si | V| < B, alors dans une région fermée R dans T, les

B3

e : 4
dérivées du premier ordre ne sont pas plus grandes que —.—,

bin o

ou a est la plus petite distance d’un point de R a la frontiére de T.
On peut en tirer des inégalités pour les dérivées d’ordre supérieur.
La formule (2) est aussi une conséquence d’une inégalité de
Harnack. On peut démontrer qu’une inégalité plus étroite
n’existe pas, ¢’est-a-dire que le coefficient 4/r ne peut pas étre
remplacé par un plus petit.

Si les dérivées du premier ordre de V sont continues dans T,

et si1
AY
f:‘f;d* =0

pour toute courbe fermée dans T, ou méme si cette égalité a
lien pour toute circonférence comprise dans T ainsi que pour
tout point intérieur, alors V est harmonique dans T. C’est le théo-
réme de Bocher. Car, si on intégre par rapport a4 r I’équation
équivalente |

2=
ov
.j/‘ —d3S =0
or
8]
de 0 & r, on trouve

/‘Vd’ﬁ — 2zV (v, y) = 0, ou bien N(r,y) = )1 /’ Vds |
e Il e

0

et V est égale & sa propre moyenne arithmétique sur toute
circonférence comprise dans T. Cela suffit, d’aprés le théoréme
de Koebe, pour que V soit harmonique dans T.

3. — Le théoréme de Morera. — MorEra ! a démontré que si
9 4 . . .
Iintégrale, d’une fonction continue de la variable complexe

1 Reale Istituto Lombardo di scienze e lettere, Rendiconti (2) XIX (1886), p. 304.

g : - ;
L'Euscignement mathém., 27¢ année; [928.
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[reas

r

z2 =z 4+ iy,

est nulle pour toute courbe fermée I' dans T, alors f(z) est
analytique dans T. La démonstration de ce théoréme donnée par
Oscoop ! n’exige pas que l'intégrale soit nulle pour tout rec-
tangle dont les cotés sont paralleles a deux lignes fixes. Nous
sommes & méme de le démontrer en supposant que les courbes I’
sont des circonférences.

Sotent u et v deux fonctions continues dans T, et telles que

‘/)(ud.oc — vdy) = 0, /(wdx + udy) = 0 (6)

C N ¢

pour toute circonférence ¢ dans T. Alors les dérivées du premier
ordre de u et v existent et sont continues dans T, et satisfont aux
équations de Cauchy-Riemann.

Posons

. 1 ; ] 1 ¢
Ug(x,y) = ﬁagffudb’ Va(x,y) = na"’f/va,b’
G C

ou C est la surface du cercle de rayon a et de centre (x, y).
Alors dans T, les dérivées de U, et V, sont continues, d’apres
la propriété (II) des moyennes arithmétiques, et I'on a

d2U 1 » dU 1 ’
i ¢ — — udzx bya e — udy
x e T
C C
Y% | dV 1
- vdx , ¢ — =g vdy
dx 7 a? dY Ta

Done, par les équations (6),

b[]a . bVa bUa - bVa

L

dax 0y oY - [

Cela veut dire que U, 4+ ¢V, est une fonction analytique de-

1 Lehrbuch der Funktioncatheorie, 4¢ ed. Berlin (1923), p. 302.
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z -+ iy dans Ty, et, par suite, que U, et V, sont harmoniques
dans T,.

Alors U, et V, sont égales a leurs propres moyennes arithmé-
tiques sur les surfaces de cercles dans T,. Puisque cela a lieu pour
tout @ > 0, et puisque U, et V, tendent uniformement vers u
et ¢ quand a tend vers 0, u et ¢ sont elles aussi égales & leurs
moyennes arithmétiques dans chaque région fermée de T.
D’apres leurs définitions, U, et Vg sont donc identiques a u et ¢,
et leurs dépendances de a n’est qu’apparente. Donc u et ¢ ont des
dérivées continues dans T, qui satisfont aux équations de
Cauchy-Riemann, et le théoréme de Morera est démontré.

4. — Les fonctions surharmoniques. — La fonction continue W
est dite surharmonique dans T, si pour chaque domaine T’
compris dans T, et pour chaque fonction U, harmonique dans T’
et continue dans T ainsi que sur la frontiére de T’, I'inégalité
W > U sur la frontiere de T’ entraine la méme inégalité en tout
point de T".

La fonction continue W est sousharmonique dans T s1i — W
est surharmonique dans T.

Les fonctions harmoniques dans T appartiennent & la fois a la
classe des fonctions surharmoniques et & celle des fonctions sous-
harmoniques. Ce sont les seules fonctions qui appartiennent
simultanément aux deux classes.

Nous indiquerons quelques propriétés des fonctions surhar-
moniques qui nous seront utiles.

1. St W est continue et surharmonique dans T, on a

| 1 |
W L
Ve, y) > zna/“ ds
€

pour toute circonférence ¢ tracée dans T.

Soit ¢ une telle circonférence, et soit U la fonction, harmonique
dans le cercle dont la circonférence est ¢, et qui a, sur ¢, les mémes
valeurs que W. Alors

1 1
W(x, > Ulx, _ Jds — —— d
(x,y) 2 Uz, y) szb‘l“’ 5 Wds .

Ta
v
¢ [
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I1. Si W est continue dans T, et si, pour chaque point P (z, y)
dans T il existe un nombre « > 0, tel que

1
T oy > 1 I
Wi,y = mevxds

¢

pour toute circonférence de centre P et de rayon a < a«, alors W est
surharmonique dans T.

Soit U une fonction harmonique dans un domaine T’ compris
dans T, continue dans T et sur sa frontiére; et soit W une fone-
tion telle que W > U sur la frontiéere de T’'. D’aprés I’hypo-
thése, pour chaque point P de T’, il y a un nombre « tel que

VV(x,y)———U(x,y)Q——l—— (W — U)ds

= 2ra

pour toute circonférence ¢ dans T’ de centre P et de rayon
a < «, puisque U est sa propre moyenne arithmétique. Une
telle fonction W — U ne saurait avoir un minimum dans
T’. Elle est donc plus grande que ou égale & 0 dans T’ puis-
qu’elle I'est sur la frontiére de T'. W est donc bien surharmo-
nique dans T.

II1. St W est surharmonique et si ses dérivées du second ordre
existent et sont continues dans T, alors

2 W 02 W
Dar oy?

VZW — <0

dans T, et réciproquement, si les dérivées du second ordre de W
sont continues el satisfont a cette inégalité, W est surharmonique.
De la formule de Green .

[ [ vwas :f?: ds = rf?:\—’fde
C ¢

0

on tire

ok 5w = i
0 C ¢ c

De cette équation, et des propriétés (I) et (II), découle la
conclusion indiquée.
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IV. Si W est continue et surharmonique dans T, st T" est un
domaine dans T, et si U est harmonique dans T' avec les mémes
valeurs que W sur la frontiére de T'; alors la fonction Wy,

W, == U dans T’
W. — W dans le reste de T

1

est surharmonique dans T.
Si P (z, y) est un point de T’, alors pour a < o, « étant la
distance de P a la frontiére de T’, on a

1 T -
W (x, y) = 35 W.ds .
c

Si P (x, y) est un point de T — T,

o S 1 ,
W, (x, y) = W(e, y) = 27?05/‘“7018—2' ‘.’.xaf“lds

C C

pour toute circonférence dans T.
Done, par la propriété (II), on voit que W, est surharmonique
dans T.

5. — Le probléme de Dirichlet pour un domaine quelconque. —
Nous pouvons maintenant faire voir comment on peut résoudre
le probléme de Dirichlet dans le cas le plus général ou la solution
existe. | ’

Mais, pour ne pas introduire des complications inutiles, nous
‘nous bornerons au cas ot il existe un point extérieur a T. Alors,
par une inversion, nous pouvons revenir au cas ou T est un
domaine borné.

Soit ¢ I’ensemble des points frontiéres de T; ¢ est un ensemble
fermé. Nous empruntons le théoréme, maintenant assez bien
connu, qui dit que st f (P) est une fonction définie et continue sur
un ensemble borné et fermé t, il existe une fonction ¥ (P) continue
dans tout le plan, qui sur t, coincide avec f (P). Appelons une telle
fonction F (P) une extension continue de f(P) & tout le plan.

Nous commencons par le cas ou cette extension est réalisée
par un polynome surharmonique. C’est-a-dire que nous posons
le probléme suivant: Etant donné un domaine borné T, et les
valeurs f (P) sur la frontiére ¢ de T que prend un polynome en
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les coordonnées (z, y) de P, surharmonique dans T, on demande
de trouver une fonction U, harmonique dans T, continue dans
T -+ ¢, qui prenne les valeurs f (P) sur .

Soit R;, R,, R;, ... une suite infinie de régions fermées, non
nécessairement distinctes, et dont chacune jouit des propriétés
suivantes:

a) Rjest dans T + ¢.

b) Chaque point de T est intérieur & un cercle qui est dans
une infinité des R;.

¢) On sait résoudre le probleme de Dirichlet pour chaque R;.

Par exemple, les R; peuvent étre les sphéres employées par
Poincaré dans sa méthode de balayage.

On forme maintenant une suite infinie de fonctions:

‘W,: W, est le polynome surharmonique donné, dont les valeurs
sur la frontiére ¢ sont f (P);

W,: dans R;, W, est égale & la fonction harmonique dans R,
avec les mémes valeurs sur la frontiere de R; que W,, dans
T +t—R;, W, est égale a W,.

W, : dans R,, W, est égale & la fonction harmonique dans
R,, avec les mémes valeurs sur la frontiére de R, que W,,
dans T 4+ t— R,,, W, est égale a W,_;.

Les fonctions W; sont continues, et, d’aprés la propriété (1V)
des fonctions surharmoniques, elles sont toutes surharmoniques
dans T. Chaque W; a les valeurs f (P) sur ¢. La suite W,, Wy, W; ...
est monotone, jamais croissante. Elle est toujours plus grande
que le minimum de f (P). Donc la suite converge en chaque point
de T + t. '

Soit P un point quelconque de T. Soient R, , R,,, Ry, ... les
régions qui contiennent un cercle fixe ¢ ayant P comme centre.
Alors la suite partielle infinie Wy, , Wy, , Wy, ... est convergente, a
termes harmoniques dans ¢ et monotone. D’aprés un théoréme
de Harnack, cette suite converge uniformément dans ¢’ concen-
trique & ¢ et plus petit. Puisque la suite W, W,, W3, ... est
monotone et contient la suite W, , Wy,, Wy, ..., la premiére
suite aussi converge uniformément dans o'
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Alors, par le théoréme de Heine-Borel, la suite W;, W,, W3, ...
converge uniformément dans chaque région fermée dans T, et la
limite U est harmonique dans T.

Nous verrons tout & I’heure que U est la solution du probléeme
de Dirichlet si la solution existe. Tout d’abord, il s’agit de lever
certaines restrictions.

Soit F (P) un polynome donné, et soit M le maximum de
V2F (P) dans T -+ ¢. Alors

' M
F{P) = F(P) —-—--bf(,):2 + y? + 2% — [—r(.zz + y* 4 22)]

est la différence F” (P) — F’ (P) de deux polynomes surharmo-
niques dans T. Si donc, nous formons les suites W,, W;, W, ...
et W,, W/, W, ... correspondant & F" (P) et F’'(P), la suite
W, =W, —W,, W, =W, — W/, ... sera la suite correspondant
a I (P) et elle sera uniformément convergente dans chaque
région fermée dans T, et la limite U sera harmonique dans T.-

De plus, si m < F (P) < M sur ¢, alors m < U <M dans T.

Car, & chaque ¢ > 0, il correspond une région R, dans T, telle
que dans T 47— R, m —: < W; <M + . Cest évident pour
: = 0. Mais en remplacant W; dans une région intérieure a
T + ¢ par une fonction harmonique dans cette région avec
les mémes valeurs sur la frontiére que W;, on n’augmente jamais
le maximum de W;, on ne diminue pas le minimum. Par
conséquent m —e < UM + ¢, et puisque cela a lieu pour
chaque ¢ > 0, m < U <M.

Maintenant, soit f(P) une fonction arbitraire définie et
continue sur ¢. Soit F (P) une extension continue de f (P) dans
tout le plan. Soit C un cercle contenant T' -~ ¢. Etant donné
e > 0, 1l existe, d’aprés le théoréme de Weierstrass, un polynome
G: (P) tel que | G. (P) —F (P) | < ¢ dans C, et par conséquent,
tel que ,

G:(P) — e < F(P) < G, (P) + ¢

dans G. De ces inégalités, on conclut que la suite W,, W,, ...

correspondant & F (P) converge uniformément dans chaque

région fermée dans T, et que la fonction limite U est har-
monique dans T.
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6. — Les valeurs périphériques. — Nous savons maintenant
faire correspondre une fonction U, harmonique dans T, & chaque
domaine borné T, et & chaque fonction continue f(P) sur la
frontiére de T. Il reste ’étude des limites de U aux points de ¢.
On [D'entreprend par la notion de barriére, introduite par
Poincaré !, perfectionnée par Lebesgue 2

La fonction U (P, p) est une barriére pour T au point p de la
frontiére ¢ de T si elle est surharmonique dans T, si elle a la
limite O en p, et si en dehors de chaque cercle dont le centre est
p, elle a une borne inférieure positive.

Nous démontrerons qu’en chaque point p de T ou une
barriére existe, U a la limite f (p). En effet, soit F (P) I’extension
continue de [ (p) avec laquelle on forme la suite Wy, W;, W,, ...
Soit ¢ un cercle de centre p tel que dans &

€

() <f(p) + 5 -

En dehors de ce cercle, F (P) aura une borne supérieure
positive M, et la barriere U (P, p) aura une borne inférieure
positive m. Done

F(P) < /(p) 4+ 5 + S U(P, p)

m

dans tout le domaine T. La fonction & droite est surharmonique-
Il s’ensuit que W, = F (P), W, W,, ... satisfont & la méme
inégalité, et par conséquent,

€ M
USflp) + 5+ U@, p).

m

Dans un cercle ¢, concentrique a ¢, dans lequel U (P, p) < '21'1\—1 ,
UsFp) + ¢

De méme, on démontre qu’il y a un cercle ¢” dans lequel
Uz/rp) — <.

Donc U a bien la valeur limite f (p) quand P tend vers p.

1 Théorie du Potentiel newtonien, Paris (1899), § 131, p. 286.
2 L.c.
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On sait que la condition nécessaire et suffisante pour que le
probléme de Dirichlet soit résoluble pour le domaine T et pour
chaque fonction continue périphérique f (P) est qu’il existe une
barriére en chaque point de la frontiére ¢ de T' L. Donc la fonction
U est la solution du probléme de Dirichlet quand la solution extiste.
Mais, que la solution existe ou non, U est harmonique dans T et
prend la valeur périphérique donnée en chaque point régulier
de la frontiére. Les points réguliers sont les points en lesquels
~ les barriéres existent.

7. — Construction des barriéres; remarques. — Soit la région
T + t telle que & chaque point p de ¢ correspond un cercle ¢
dont la circonférence passe par p, mais qui n’a pas de points
communs avec T. Soit ¢’ un cercle dans ¢, tangent & ¢ en p, et
soit r la distance du centre de ¢’ au point variable P. Alors

U (P, p) = log% est une barriére pour T au point p, ou a est le

rayon de ¢’. Donc le probléme de Dirichlet est possible pour un
tel domaine. C’est le critére de Poincaré.

Si on fait la représentation conforme du demi-plan ¢ > 0
du plan de w = u 4 i¢ sur le plan de z = x + iy, bordé par le
segment y = 0, — 1 < z < 1, la fonetion ¢ = ¢ (x, y) sera
positive dans tout le plan a l’exceptlon du segment, ou elle est
nulle. Puisque une fonction harmonique reste harmonique quand
on fait une transformation homographique ou un mouvement
euclidien du plan, on peut dire que le probléme de Dirichlet est
possible pour tout domaine tel que chaque point p de ¢ soit
Iextrémité d’un segment de droite qui a, avec T ¢, ce seul
point commun.

Tout ce qui a été dit dans les paragraphes précédents est aussi
valable pour les domaines dans l’espace & trois dimensions.
Pour0 <n <1, on peut trouver une solution P, (w) de ’équation
de Legendre

(] dP;]
E[“ — u?) duJ +nu{n 4+ 1)Py(u) = 0, i =— cos 9

15KELL0GG Proceedings of the American Academy of Arts and Sciences, LVIII (1923),
p. 527 .
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qui est analytique et positive pour & < 3, ou &, est aussi voisin
de = qu'on veut. La fonction ™ P, (u) sera harmonique et
positive en dehors d’un cone assez aigu, et nulle a I'origine. Soit
C un cone de méme axe et sommet, avec une ouverture un peu
plus grande, et soit 7 une sphere, aussi petite qu’on veut, avec le
sommet de G comme centre. Sur ¢, " P, (z) a un minimum
positif m sur C et en dehors de C. Soit U (P, p) égale & m en
dehors de o, et égale & la plus petite des fonctions r™ P, (u) et
m dans o et en dehors de C. Alors U (P, p) est surharmonique
sauf aux points & la fois dans ¢ et dans C, et est une barriére
au sommet de G pour chaque domaine n’ayant pas de points
communs avec I'intérieur de G dans ¢. On a ainsi le critére de
Zaremba: le probleme de Dirichlet est possible pour tout domaine
a trois dimensions- dont chaque point p de la frontiére ¢ est le
sommet d’'un cone qui, dans un voisinage de p n’a pas de point
commun avec T.

On peut construire des barriéres beaucoup plus générales.
Mais nous ne devons pas aller trop loin dans cette direction la.

Terminons avec la remarque que la méthode que nous avons
indiquée renferme, dans les traits essentiels, plusieurs méthodes
connues.

Si R{, Ry, R;, ... sont un systeme de spheéres (ou cercles), la
méthode devient la méthode de balayage de Poincaré.

Si la suite Ry, R,, ... ne contient que deux régions distinctes,
on a le procédé alterné de Schwarz.

Si la suite Ry, Ry, Ry ... est telle que R; soit complétement
interieur & R;y;, quel que soit i, on a la méthode indiquée par
Pauteur !, et perfectionnés par M. N. Wiener 2.

Geneve.

1L.c
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