
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1928)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES MOYENNES ARITHMÉTIQUES DANS LA THÉORIE DU
POTENTIEL

Autor: Kellogg, Oliver D.

DOI: https://doi.org/10.5169/seals-21865

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-21865
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


LES MOYENNES ARITHMÉTIQUES DANS LA THÉORIE
DU POTENTIEL1

La notion de moyenne arithmétique, introduite dans la
théorie du potentiel par Gauss % et utilisée par Zaremba3,
Lebesgue 4, et autres, est sans doute destinée à jouer un
rôle d'importance croissante dans cette théorie. Je me propose
d'indiquer brièvement quelques-uns des services qu'elle peut
rendre.

1. — Quelques propriétés de la moyenne arithmétique. — Soit
T un continuum ouvert, ou domaine. Soit Ta l'ensemble des

points de T dont la distance à la frontière de T dépasse le
nombre positif a, assez petit pour que Ta contienne des points.
Soit W une fonction définie dans T, et intégrable. Nous appelons

moyenne arithmétique de W sur un cercle la fonction

où C est le cercle de rayon a de centre P (#, y).
On établit sans peine les propriétés suivantes de Wx:
I. Ni W est bornée dans T, Wx satisfait à une condition uniforme

de Lipschitz dans Ta. Par exemple, si | W | B,

1 Conférence faite à Genève, au Colloque mathématique des Universités de la Suisse

romande, le 28 janvier 1928.
2 Allgemeine Lehrsätze, Gesammelte Werke, V, p. 200.
3 Atti del Congr. Internat, dei Mat. II (1908), p. 194; Bull, de l'Acad. de Sei. de Cra-

covie, 1909, p. 197-264; Acta Math. XXXIV (1911), p. 293-316.
4 Sur le problème de Dirichlet, Comptes rendus, t. CLIV (1912), p. 335.
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P et Q étant deux points quelconques de Ta à distance h.

II. Si W estuniformément continue dans T, les dérivées

öVVj öWj
ö x b y

existent et sont uniformément continues dans Ta. En effet, on

déduit de la définition de la formule

&v\\ î rw cos. ^ ^ ds ^ ^naÂ 1ÔX'

où c désigne la circonférence de G et (rc, x) l'angle entre le

rayon de C et l'axe des x. Si B est une borne pour | W |, alors

bW,
bx <—. (2)

— 7z a

III. Si W est uniformément continue dans T, et si ses dérivées

du premier ordre sont continues dans T, on a alors dans Ta,

«ü < r/*-.«, p,
bx 7za2J J öa:

C

c'est-à-dire que les dérivées de W1 sont les moyennes arithmétiques
des dérivées correspondantes de W. Cette formule dérive de (1)

par une application de l'identité de Green.

2. — Les fonctions qui sont égales à leurs propres moyennes
arithmétiques. — Soit V une fonction intégrable et bornée dans T,
et telle que, pour tout a > 0, on ait dans Ta

*=i// •

Il suit de (I) que Y est uniformément continue dans Ta,
de (II) que les dérivées du premier ordre de V existent et sont
uniformément continues dans T2a, et de (III) que ces dérivées
sont égales à leurs propres moyennes arithmétiques dans T2a.
On peut alors appliquer aux dérivées le même raisonnement, et
conclure, puisque a est aussi petit qu'on veut, que les dérivées
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d'ordre quelconque existent et sont continues dans chaque région
fermée appartenant à T. De plus, V est harmonique dans T.

Montrons d'abord que V est égale à sa propre moyenne
arithmétique sur les circonférences. Puisque elle est égale à sa propre
moyenne sur les surfaces de cercles, on a

>'2 V -f f Vrdrd.J
o o

La dérivation de cette égalité par rapport à r donne

1/ Vrrf* (4)
0

È/- -

2/V -

qui est la relation cherchée.

De plus, si on supprime le facteur r dans (4), et qu'on difïé-
rentie l'équation trouvée par rapport à r, on a, puisque la valeur
au centre du cercle ne dépend pas de r,

2r.

0 — f— dâ,et 0
7Z J Ö /' J ft n

0 c

Maintenant, en appliquant l'équation (1) aux dérivées
premières de V, on a

Ö2Y ö2

v v FF f ï?
v 1 rrôV ,tav

/ I,,
COS (" "r) + cos {n Jds

(S

~a2J ö n

quantité qui, comme nous venons de le voir, est nulle. V est donc
bien harmonique dans T.

En intégrant la relation (4) on voit que si V est continue dans

T et égale à sa propre moyenne arithmétique sur toute circonférence

comprise dans T (et pour tout point intérieur), elle est

aussi égale à sa propre moyenne arithmétique sur tout cercle
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dans T. On a aussi une démonstration de la réciproque due à

Koebe du théorème de Gauss :

Si V est continue dans T, et égale à sa propre moyenne arithmétique
sur la circonférence de chaque cercle dans T, V est harmonique dans T.

L'inégalité (2) dit que, si une fonction V est harmonique dans

T, et si | V | <^ B, alors dans une région fermée R dans T, les
4 B

dérivées du premier ordre ne sont pas plus grandes que —. —,

où a est la plus petite distance d'un point de R à la frontière de T.
On peut en tirer des inégalités pour les dérivées d'ordre supérieur.
La formule (2) est aussi une conséquence d'une inégalité de
Harnack. On peut démontrer qu'une inégalité plus étroite
n'existe pas, c'est-à-dire que le coefficient 4/rr ne peut pas être
remplacé par un plus petit.

Si les dérivées du premier ordre de V sont continues dans T,
et si

r dv 7

pour toute courbe fermée dans T, ou même si cette égalité a
lieu pour toute circonférence comprise dans T ainsi que pour
tout point intérieur, alors V est harmonique dans T. C'est le théorème

de Bêcher. Car, si on intègre par rapport à r l'équation
équivalente

2r

r ôV/ — 15 =r 0
J ôr
0

de 0 à r, on trouve

Ç\cl$ — 2-\ (.r y) — 0 ou bien V (.r ,y) —— / \ys ^

o

et V est égale à sa propre moyenne arithmétique sur toute
circonférence comprise dans T. Cela suffit, d'après le théorème
de Koebe, pour que V soit harmonique dans T.

3. Le théorème de Morera. — Morera 1 a démontré que si
1 intégrale, d'une fonction continue de la variable complexe

i Reale Istituto Lombardo di scienze e letterè, Rendiconti (2) XIX (1886). p. 304.

L'Enseignement mathém., *27« année; 1928.
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z x + iy, Jf(z)r

est nulle pour toute courbe fermée T dans T, alors f (z) est

analytique dans T. La démonstration de ce théorème donnée par
Osgood 1 n'exige pas que l'intégrale soit nulle pour tout
rectangle dont les côtés sont parallèles à deux lignes fixes. Nous
sommes à même de le démontrer en supposant que les courbes T
sont des circonférences.

Soient u et v deux jonctions continues dans T, et telles que

J (udx — vdy) — 0 j*(vdx -j- udy) =r 0 (6)

pour toute circonférence c dans T. Alors les dérivées du premier
ordre de u et v existent et sont continues dans T, et satisfont aux
équations de Cauchy-Riemann.

Posons

Ua(x,2/) 2b CÇudS,/)

C c

où C est la surface du cercle de rayon a et de centre (x, y).
Alors dans Ta, les dérivées de Ua et Va sont continues, d'après
la propriété (II) des moyennes arithmétiques, et l'on a

0 U a 1 C j ö U a 1 S J
- — —s I udx z= ö / udy
d# r.a2 J dt/ 7za J

öya î r ÖY« i r
„ / vdx — —ö / vdy

dx t. a1 J ùy % a* J

Donc, par les équations (6),

öUfl dYa dU« dY a

dx ö 2/ à y dx

Gela veut dire que Ua + iVa est une fonction analytique de

i Lehrbuch der Funktionentheorie, 4e ed. Berlin (1923), p. 302
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x + iy dans Ta, et, par suite, que Ua et Va sont harmoniques
dans Ta.

Alors Ua et Va sont égales à leurs propres moyennes arithmétiques

sur les surfaces de cercles dans Ta. Puisque cela a lieu pour
tout a > 0, et puisque Ua et Ya tendent uniformément vers m

et v quand a tend vers 0, u et v sont elles aussi égales à leurs

moyennes arithmétiques dans chaque région fermée de T.

D'après leurs définitions, Ua et Va sont donc identiques à u et c,

et leurs dépendances de a n'est qu'apparente. Donc u et e ont des

dérivées continues dans T, qui satisfont aux équations de

Cauchy-Riemann, et le théorème de Morera est démontré.

4. — Les fonctions surharmoniques. — La fonction continue W
est dite surharmonique dans T, si pour chaque domaine T7

compris dans T, et pour chaque fonction U, harmonique dans T'
et continue dans T' ainsi que sur la frontière de T7, l'inégalité
W ^ U sur la frontière de T7 entraîne la même inégalité en tout
point de T7.

La fonction continue W est sousharmonique dans T si — W
est surharmonique dans T.

Les fonctions harmoniques dans T appartiennent à la fois à la
classe des fonctions surharmoniques et à celle des fonctions sous-
harmoniques. Ce sont les seules fonctions qui appartiennent
simultanément aux deux classes.

Nous indiquerons quelques propriétés des fonctions
surharmoniques qui nous seront utiles.

I. Si W est continue et surharmonique dans T, on a

pour toute circonférence c tracée dans T.
Soit c une telle circonférence, et soit U la fonction, harmonique

dans le cercle dont la circonférence est c, et qui a, sur c, les mêmes
valeurs que W. Alors

e

W(,. „) ï U(*. y) éifWJ'
C Cc
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II. Si W est continue dans T, et si, pour chaque point P (x, y)
dans T il existe un nombre at > 0, tel que

pour toute circonférence de centre P et de rayon a < a, alors W est

surharmonique dans T.
Soit U une fonction harmonique dans un domaine T' compris

dans T, continue dans T' et sur sa frontière; et soit W une fonction

telle que W U sur la frontière de T'. D'après l'hypothèse,

pour chaque point P de T", il y a un nombre a tel que

pour toute circonférence c dans T' de centre P et de rayon
a < a, puisque U est sa propre moyenne arithmétique. Une
telle fonction W — U ne saurait avoir un minimum dans

T'. Elle est donc plus grande que ou égale à 0 dans T'
puisqu'elle l'est sur la frontière de T'. W est donc bien surharmonique

dans T.
III. Si W est surharmonique et si ses dérivées du second ordre

existent et sont continues dans T, alors

dans T, et réciproquement, si les dérivées du second ordre de W
sont continues et satisfont à cette inégalité, W est surharmonique.

De la formule de Green

c c o

on tire
a

fé-Jf V2WdSdr -- f Wds — W y)2r.aJ v *
0 c c

De cette équation, et des propriétés (I) et (II), découle la
conclusion indiquée.
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IV. Si W est continue et surharmonique dans T, si T' est un

domaine dans T, et si (J est harmonique dans T' avec les mêmes

valeurs que W sur la frontière de T'; alors la fonction Wx,

Wj ~ U dans Tr

Wj W dans le reste de T

est surharmonique dans T.
Si P (#, y) est un point de T', alors pour a < a, a étant la

distance de P à la frontière de T', on a

pour toute circonférence dans T.

Donc, par la propriété (II), on voit que Wj est surharmonique
dans T.

5. — Le problème de Dirichlet pour un domaine quelconque. —
Nous pouvons maintenant faire voir comment on peut résoudre
le problème de Dirichlet dans le cas le plus général où la solution
existe.

Mais, pour ne pas introduire des complications inutiles, nous
nous bornerons au cas où il existe un point extérieur à T. Alors,
par une inversion, nous pouvons revenir au cas où T est un
domaine borné.

Soit t l'ensemble des points frontières de T; t est un ensemble
fermé. Nous empruntons le théorème, maintenant assez bien

connu, qui dit que si f (P) est une fonction définie et continue sur
un ensemble borné et fermé t, il existe une fonction F (P) continue
dans tout le plan, qui sur t, coïncide avec f (P). Appelons une telle
fonction F (P) une extension continue de / (P) à tout le plan.

Nous commençons par le cas où cette extension est réalisée

par un polynome surharmonique. C'est-à-dire que nous posons
le problème suivant: Etant donné un domaine borné T, et les
valeurs / (P) sur la frontière £ de T que prend un polynome en

c

Si P (x, y) est un point de T — T',

W, (*, y)w (x y)>2^f ^ 2
W'
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les coordonnées (#, y) de P, surharmonique dans T, on demande
de trouver une fonction U, harmonique dans T, continue dans

I T + t, qui prenne les valeurs / (P) sur t.

| Soit Rx, R2, R3, une suite infinie de régions fermées, non
j nécessairement distinctes, et dont chacune jouit des propriétés
| suivantes :

j a) Ri est dans T -f t.
j b) Chaque point de T est intérieur à un cercle qui est dans
j une infinité des Rj.
j c) On sait résoudre le problème de Dirichlet pour chaque Rj.
j Par exemple, les Ri peuvent être les sphères employées par
j Poincaré dans sa méthode de balayage.

On forme maintenant une suite infinie de fonctions:
il W0: W0 est le polynome surharmonique donné, dont les valeurs
|| sur la frontière t sont / (P);
I Wx : dans Rt, Wx est égale à la fonction harmonique dans Rx
| avec les mêmes valeurs sur la frontière de Rj que W0, dans
j T -f t — R1, Wj est égale à W0.

Wn : dans Rn, Wn est égale à la fonction harmonique dans

Rn, avec les mêmes valeurs sur la frontière de Rn que Wn-i,
dans T 4- t — Rn, Wn est égale à Wn-i •

j Les fonctions W\ sont continues, et, d'après la propriété (IV)
| des fonctions surharmoniques, elles sont toutes surharmoniques
j dans T. Chaque Wi aies valeurs / (P) sur t. La suite Wx, W2, W3...
j est monotone, jamais croissante. Elle est toujours plus grande
j que le minimum de / (P). Donc la suite converge en chaque point
f de T -j- t.
I Soit P un point quelconque de T. Soient Rni, Rng, Rn3, les

régions qui contiennent un cercle fixe <j ayant P comme centre.
| Alors la suite partielle infinie Wni, Wn2, est convergente, à

jj termes harmoniques dans g et monotone. D'après un théorème
: de Harnack, cette suite converge uniformément dans g' concentrique

à g et plus petit. Puisque la suite Wl7 W2, W3, est

j monotone et contient la suite Wni, W^, Wns, la première
| suite aussi converge uniformément dans g'.
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Alors, par le théorème de Heine-Borel, la suite Wx, W2, W3,...
converge uniformément dans chaque région fermée dans T, et la

limite U est harmonique dans T.
Nous verrons tout à l'heure que U est la solution du problème

de Dirichlet si la solution existe. Tout d'abord, il s'agit de lever
certaines restrictions.

Soit F (P) un polynome donné, et soit M le maximum de
V2 F (P) dans T + t. Alors

F (P) F (P) - ^ (X*+ y-+ s2) - [- -h + *2)]

est la différence F" (P) — F' (P) de deux polynômes surharmoniques

dans T. Si donc, nous formons les suites W", W", W2
et Wq, Wi, W2 correspondant à F" (P) et F'(P), la suite
W0 =3 Wq — Wo, Wx W" — W/, sera la suite correspondant
à F (P) et elle sera uniformément convergente dans chaque
région fermée dans T, et la limite U sera harmonique dans T.

De plus, si m <£ F (P) M sur £, alors m U M dans T.
Car, à chaque s > 0, il correspond une région R, dans T, telle

que dans T + t — R, m — £ <^ W* M + £. C'est évident pour
i 0. Mais en. remplaçant W* dans une région intérieure à
T + t par une fonction harmonique dans cette région avec
les mêmes valeurs sur la frontière que Wi, on n'augmente jamais
le maximum de Wi, on ne diminue pas le minimum. Par
conséquent m — s U M + £, et puisque cela a lieu pour
chaque s > 0, m U <Ç M.

Maintenant, soit f (P) une fonction arbitraire définie et
continue sur t. Soit F (P) une extension continue de / (P) dans
tout le plan. Soit C un cercle contenant T -f- t. Etant donné
£ > 0, il existe, d'après le théorème de Weierstrass, un polynome
G£ (P) tel que | Gg (P) — F (P) | < s dans C, et par conséquent,
tel que

G£(P)-S<F(P)<G,(P)+E

dans C. De ces inégalités, on conclut que la suite W3, W2,
correspondant à F (P) converge uniformément dans chaque
région fermée dans T, et que la fonction limite U est
harmonique dans T.
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6. — Les valeurs périphériques. — Nous savons maintenant
faire correspondre une fonction U, harmonique dans T, à chaque
domaine borné T, et à chaque fonction continue / (P) sur la
frontière de T. Il reste l'étude des limites de U aux points de t.
On l'entreprend par la notion de barrière, introduite par
Poincaré \ perfectionnée par Lebesgue 2.

La fonction U (P, p) est une barrière pour T au point p de la
frontière t de T si elle est surharmoniqun dans T, si elle a la
limite 0 en p, et si en dehors de chaque cercle dont le centre est

/?, elle a une borne inférieure positive.
Nous démontrerons qu'en chaque point p de T où une

barrière existe, U a la limite / (p). En effet, soit F (P) l'extension
continue de / (p) avec laquelle on forme la suite W0, Wx, W2î
Soit (7 un cercle de centre p tel que dans a

F(0 </» •

En dehors de ce cercle, F (P) aura une borne supérieure
positive M, et la barrière U (P, p) aura une borne inférieure
positive m. Donc

F(p) </» + i+*7u(p• p)

dans tout le domaine T. La fonction à droite est surharmonique*
Il s'ensuit que W0 F (P), Wl5 W2, satisfont à la même

inégalité, et par conséquent,

ug/W + { + -£fu(P ,P).
Dans un cercle g-', concentrique à cr, dans lequel U (P, p) < ~

u g f(p) -I- « •

De même, on démontre qu'il y a un cercle <?" dans lequel

U ^ f(p) - s

Donc U a bien la valeur limite / (p) quand P tend vers p.

i Théorie du Potentiel newtonien, Paris (1899), § 1-31, p. 286.
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On sait que la condition nécessaire et suffisante pour que le

problème de Dirichlet soit résoluble pour le domaine T et pour
chaque fonction continue périphérique / (P) est qu'il existe une
barrière en chaque point de la frontière t de TL Donc la fonction
U est la solution du problème de Dirichlet quand la solution existe.

Mais, que la solution existe ou non, U est harmonique dans T et
prend la valeur périphérique donnée en chaque point régulier
de la frontière. Les points réguliers sont les points en lesquels
les barrières existent.

7. — Construction des barrières; remarques. — Soit la région
T + t telle que à chaque point p de t correspond un cercle a

dont la circonférence passe par p, mais qui n'a pas de points
communs avec T. Soit <j' un cercle dans <7, tangent à <j en p, et
soit r la distance du centre de <7' au point variable P. Alors

U (P, p) log ~ est une barrière pour T au point p, où a est le

rayon de o*'. Donc le problème de Dirichlet est possible pour un
tel domaine. C'est le critère de Poincaré.

Si on fait la représentation conforme du demi-plan ç 0
du plan de w u + iv sur le plan de 2 x + iy, bordé par le
segment y 0, — 1 x 1, la fonction v — v (x, y) sera
positive dans tout le plan à l'exception du segment, où elle est
nulle. Puisque une fonction harmonique reste harmonique quand
on fait une transformation homographique ou un mouvement
euclidien du plan, on peut dire que le problème de Dirichlet est
possible pour tout domaine tel que chaque point p de t soit
l'extrémité d'un segment de droite qui a, avec T +1, ce seul
point commun.

Tout ce qui a été dit dans les paragraphes précédents est aussi
valable pour les domaines dans l'espace à trois dimensions.
Pour 0 < n < 1, on peut trouver une solution Pn (u) de l'équation
de Legendre

<1 r,
Tu jj1 ~~ ll") + n (n H- 1) P« h') 0 U — COS h

p
15^ellogg' Proce^ngs of the American Academy of Arts and Sciences, LVIII (1923),
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qui est analytique et positive pour 3 < 30, où 30est aussi voisin
de 7T qu'on veut. La fonction rn Pn (u) sera harmonique et
positive en dehors d'un cône assez aigu, et nulle à l'origine. Soit
G un cône de même axe et sommet, avec une ouverture un peu
plus grande, et soit <7 une sphère, aussi petite qu'on veut, avec le
sommet de C comme centre. Sur <7, rn Pn(u) a un minimum
positif m sur C et en dehors de C. Soit U (P, p) égale à m en
dehors de <7, et égale a la plus petite des fonctions rn Pn (u) et
m dans <7 et en dehors de C. Alors U (P, p) est surharmonique
sauf aux points à la fois dans a et dans C, et est une barrière
au sommet de G pour chaque domaine n'ayant pas de points
communs avec l'intérieur de G dans <7. On a ainsi le critère de

Zaremba : le problème de Dirichlet est possible pour tout domaine
à trois dimensions dont chaque point p de la frontière t est le
sommet d'un cône qui, dans un voisinage de p n'a pas de point
commun avec T.

On peut construire des barrières beaucoup plus générales.
Mais nous ne devons pas aller trop loin dans cette direction là.

Terminons avec la remarque que la méthode que nous avons
indiquée renferme, dans les traits essentiels, plusieurs méthodes

connues.
Si R1? R2, R8, ••• sont un système de sphères (ou cercles), la

méthode devient la méthode de balayage de Poincaré.
Si la suite R1? R2, ne contient que deux régions distinctes,

on a le procédé alterné de Schwarz.
Si la suite Rx, R2, R3 est telle que Ri soit complètement

intérieur à Ri+i, quel que soit &, on a la méthode indiquée par
l'auteur 1f et perfectionnée par M. N. Wiener 2.

Genève.

1 L. c.
2 Journal of Mathematics and Physics of the Massachusetts Institute of Technology,

2e ser, No. 70 (Jan. 1924), No. 78 (April 1924).
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