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DÉMONSTRATION NOUVELLE
DE LA FORMULE TRIGONOMÉTRIQUE RELATIVE

A L'ADDITION DES ARCS

PAR

Louise Pelosi, Dr ès se. (Turin).

On connaît plusieurs démonstrations de la formule
fondamentale.

sin (a b) — sin a cos b -j- sin b cos a ; (1)

ces démonstrations sont fondées sur l'emploi de triangles
semblables, ou sur le théorème de Ptolémée relatif au quadrilatère

inscrit, ou sur le théorème des projections, ou sur des
considérations analogues (voir, par exemple, les Exercices de Trigonométrie,

par F. G. M., page 8, Paris, a. 1915).
On doit aussi à M. Burali-Forti une démonstration très

simple de la formule (1), à l'aide de la théorie des vecteurs (voir:
Burali-Forti e Marcolongo: Corso di Matematica, vol. II, Geome-

tria, page 56, Napoli, a. 1923).
Dans cette Note je vais donner une démonstration nouvelle

et tout à fait élémentaire de la formule (1) par des considérations
très simples sur l'équivalence des triangles.

Désignons par a et b deux angles aigus, que nous représentons
sur le cercle trigonométrique par les arcs AB et BG; menons AP
et CQ perpendiculaires au rayon OB, et CN perpendiculaire au
diamètre AA'. Nous aurons:

AP

QG

sin a OP ~ cos a

z=z sin b OQ — cos b

NC sin (« + b)
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Joignons A aux points Q et C, et remarquons que, le rayon
OA étant égal à l'unité, la valeur de NG est égale au double de

l'aire du triangle AOC, de sorte que nous pouvons écrire:

sin (a -j- b) — NC — 2 • AOC =: 2 • AOM -j- 2 • MOC (2)

D'autre part les triangles AQC, PQG sont équivalents car ils

ont la même base QC et ont les sommets A et P sur une parallèle
à la base; si l'on soustrait de chacun de ces deux triangles, le

triangle MQC on conclut que les triangles AQM et PMC sont

équivalents, par conséquent le triangle AOC est équivalent à la
somme des triangles AOQ et PQC; de là, on déduit:

2 AOC 2 • AOQ -f 2 POC OQ • AP + OP • QC

cos b • sin a -J- cos a • sin b

En portant dans la relation (2) on obtient la formule (1).
Par des considérations analogues à celles que nous venons de

développer on trouverait que la formule (1) subsiste pour des

valeurs quelconques de a et de b.

Remarque. — Si a è, les points Q, M, P coïncident et l'aire
du triangle AOC devient égale à sin a cos a; on en conclut
immédiatement la formule :

sin 2« =: 2 sin a cos a

Lycée de Bielle (Turin). — Février 1928.
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