Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1928)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: RÉFLEXIONS SUR L'ENSEIGNEMENT DU CALCUL INFINITÉSIMAL

Autor: Dareste, E.

Kapitel: I. — Les deux sens du mot «infini», sens étymologique et sens dérivé.

DOI: https://doi.org/10.5169/seals-21873

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

I. — LES DEUX SENS DU MOT «INFINI», SENS ÉTYMOLOGIQUE ET SENS DÉRIVÉ.

Pour plus de clarté, nous prendrons les choses d'un peu loin. Il est une notion qui vient spontanément à notre esprit parce qu'elle est dans la force même des choses. Elle peut se formuler comme suit.

Une quantité variable peut croître au delà de toute limite. — Ce concept a été représenté par le symbole d'un huit couché « ∞ » et, par le mot « infini » que, pour éviter toute confusion, nous remplacerons par l'expression « infiniment grand ». Mais comme l'« infiniment grand » n'existe pas dans le monde matériel et, n'est qu'une pure abstraction, comme, par définition même, aucune valeur ne peut lui être attribuée, comme aucun nombre ne peut le représenter, il nous est impossible de le préciser et de pénétrer le mystère qui l'enveloppe.

C'est bien là le sens qu'en mathématiques élémentaires on attribue au mot « infini », et qui est conforme à son étymologie, savoir: sans limite.

Il n'en est malheureusement pas de même pour l'analyse infinitésimale. Dans cette science, le même mot a été adopté pour représenter une idée très différente de la précédente (elle en est même séparée par un abîme). Dans ce deuxième sens, « infini » est synonyme de très grand. De même « infiniment petit » est synonyme de très petit.

Nous savons bien que, dans le langage courant, on a pris l'habitude (consacrée par le dictionnaire) d'employer le mot « infini » dans ce deuxième sens, ou sens dérivé, et que les mathématiciens n'ont fait que se conformer à l'usage; nous répondrons à cette objection possible que les abus de langage, si fréquents dans les questions dépendant de la vie pratique, parce qu'ils y sont inévitables, ne sont pas à leur place dans les sciences en général et, à plus forte raison, dans les sciences exactes. Sous peine d'ambiguïté ou d'équivoque, un seul mot doit y représenter une seul chose: j'appelle un chat un chat.

De l'expression « Infini absolu ». — J. Houël (Cours de calcul infinitésimal, 1881) est évidemment de cet avis. Cet auteur évite

l'ambiguïté en employant dans chacun des deux cas une expression différente. Conservant à l'« infini » pris dans le sens dérivé, la désignation d'« infini » tout court (ou d'infini mathématique, cette dernière déjà employée par Carnot), il adopte pour l'infini — pris dans le sens primitif, celui qu'en mathématiques élémentaires on appelle « infini » tout court — l'expression d'Infini absolu. Voici comme il s'exprime (Tome I, Livre I, chap. I):

« De même, il faut bien se garder de confondre l'infiniment « grand mathématique, soit avec le très-grand opposé au très-« petit dans l'ordre des idées physiques, soit avec l'infini absolu « pris dans le sens vulgaire et métaphysique... »

« L'infini absolu exclut toute idée de limitation et de détermination « et ne peut faire, par conséquent, l'objet d'aucune spéculation « mathématique. »

Cette nouvelle désignation, si elle a l'avantage de supprimer une ambiguïté, a par contre l'inconvénient de créer une complication inutile, en instituant deux expressions différentes pour la même idée, savoir: « infini » tout court, employé en mathématiques élémentaires et « infini absolu » qui serait employé en calcul infinitésimal.

L'expression « infiniment petit » ne peut être prise que dans le sens dérivé. — Revenant au concept formulé précédemment nous pouvons évidemment le compléter comme suit:

Par contre la même quantité variable ne peut décroitre que jusqu'à une limite bien nette qui est zéro.

Si donc, arrêtant cette quantité dans son mouvement de décroissance, nous la fixons momentanément dans une position aussi voisine que nous voudrons de sa limite, nous reconnaîtrons que nous avons ainsi déterminé une valeur très petite, mais plus grande que zéro, bien réelle par conséquent, pouvant être exprimée en chiffres et n'ayant rien de mystérieux.

On peut serrer la question de plus près en supposant que la quantité variable décroit suivant une loi déterminée, et en représentant cette décroissance graphiquement.

Soit une droite OA, la longueur OA représentant la valeur de la variable à un moment donné.

Faisons d'abord l'hypothèse que le point A se rapproche du

L'ENSEIGNEMENT DU CALCUL INFINITÉSIMAL 127

point O par bonds décroissants de façon à occuper successivement les points $A_3, A_2, A_1 \dots A_n$ tels que l'on ait

$$A A_{1} = \frac{OA}{2}$$

$$A_{1}A_{2} = \frac{OA_{1}}{2} = \frac{OA}{4}$$

$$A_{2}A_{3} = \frac{OA_{2}}{2} = \frac{OA}{8}$$

$$A_{3}A_{4} = \frac{OA_{3}}{2} = \frac{OA}{16}$$

$$A_{3}A_{4} = \frac{OA_{n-1}}{2} = \frac{OA}{2n}$$

Le point A se rapprochera indéfiniment du point O sans jamais l'atteindre; autrement dit la quantité variable décroîtra indéfiniment sans jamais s'annuler. On pourra donc, au premier abord avoir l'impression de l'infini, et il est bien possible que là se trouve la raison de l'adoption de l'expression de « quantité infiniment petite ».

Un peu de réflexion montrera que c'est une illusion, car nous pouvons faire cette autre hypothèse que, les bonds successifs sont de grandeur constante et égaux à une fraction $\frac{1}{n}$ de la variable CA, et dans ce cas le point A finira toujours par atteindre le point O, autrement dit la quantité variable s'annulera toujours quelque petite que soit la fraction $\frac{1}{n}$.

Par contre l'infiniment grand ne peut jamais être atteint quelle que soit la loi de croissance que l'on choisisse.

Et ceci montre bien que le concept d'« infini » qui s'applique si naturellement à la grandeur, c'est-à-dire aux quantités croissantes, qu'il a fallu inventer un mot pour les représenter, ne s'applique pas à la petitesse, c'est-à-dire aux quantités décroissantes.

On trouve cette idée déjà exprimée par M. Boussines dans son cours d'Analyse infinitésimale (1887).

« L'infiniment petit considéré dans sa valeur zéro, non dans

« l'infinité des degrés décroissants que parcourt pour l'atteindre « la quantité continue indéfiniment divisible, n'est pas infini, « mais nul; et il comporte, à cet égard, une connaissance aussi « nette, aussi précise que tout autre état déterminé de la grandeur, « contrairement à ce qui nous arrive pour l'infini (limite exté- « rieure de la quantité grandissante), dont la vue distincte « nous échappe, ou que, pour ainsi dire nous ne pouvons pas « regarder en face, quoique l'idée indirecte que nous en avons « soit, comme disait Pascal, absolument indispensable au « géomètre. »

Si maintenant on se reporte à la définition des «infiniment petits» en prenant par exemple le texte de Lazare Carnor (Réflexions sur la Métaphysique du Calcul infinitésimal, 1797):

« J'appelle « quantité infiniment petite » toute quantité qui est « considérée comme continuellement décroissante; tellement « qu'elle puisse être rendue aussi petite qu'on le veut, sans « qu'on soit obligé pour cela de faire varier celle dont on cherche « la relation. »

ou bien le texte plus abrégé d'auteurs contemporains (Sonnet, par exemple):

« On appelle infiniment petit une quantité qui tend vers zéro, « et que l'on considère dans un état très voisin de sa limite. »

On voit clairement que cette expression n'a de sens que si elle est synonyme de « très petit », c'est-à-dire si le mot « infini » est pris dans son sens dérivé, comme on le fait depuis Leibnitz.

L'Abbé Moreux propose l'expression « indéfiniment petit ». — La constatation de l'impropriété de l'expression « infiniment petit » ne nous est pas personnelle; elle a été faite très nettement par l'Abbé Moreux. Dans l'ouvrage qu'il a publié récemment sous le titre Pour comprendre le Calcul différentiel, on remarque le passage suivant:

« Si l'on prétendait, en effet, l'évaluer, le définir, le fixer au « moyen d'un nombre, notre infiniment petit aurait toujours la « possibilité de devenir moindre que ce nombre, puisqu'il peut « par définition se rapprocher sans cesse de zéro. Et c'est pour- « quoi, au lieu du terme infiniment petit on aurait dû, dès le début, « dire indéfiniment petit. L'expression cette fois, n'aurait plus « aucune ambiguïté, et renfermerait en quelque sorte l'idée de

« variation, qu'on perd trop souvent de vue lorsqu'on fait du « calcul infinitésimal. »

C'est la première fois, croyons-nous, sans pouvoir cependant l'affirmer, que cette critique se trouve exprimée explicitement. Si d'autres savants ont pensé comme l'Abbé Moreux, aucun n'a cru devoir formuler son opinion, de crainte, sans doute, de troubler des habitudes contractées depuis longtemps. Bien à tort, à notre avis; nous ne verrions que des avantages à abandonner une expression défectueuse.

Nous citerons encore Lazare Carnot. Ce savant, dans son ouvrage intitulé Réflexions sur la Métaphysique du Calcul infinitésimal, 1797, n'a pas, il est vrai, formulé une critique explicite au sujet des expressions en question, mais il est remarquable que, lorsqu'il se trouve dans le cas d'avoir à en employer une, presque toujours il lui adjoint un mot ou une expression qui a tout l'air d'être une correction ou une réserve.

En voici des exemples:

- 1º Quantités dites infiniment petites;
- 2º Quantités dites infinitésimales;
- 3º Quantités appelées infiniment petites;
- 4º Quantités que nous nommons infiniment petites;
- 5° C'est en cela que réside le véritable caractère des quantités auxquelles on a donné le nom d'infiniment petites et non dans la ténuité dont la dénomination semble supposer, etc.

Ce n'est pas tout; à la première page de son livre on trouve le passage suivant:

« Je parle ici conformément aux idées vagues qu'on se fait « communément des quantités dites infinitésimales— lorsqu'on « n'a pas pris la peine d'en examiner la nature. »

Ayant constaté l'existence de ces idées vagues (qui probablement existent encore) Carnot s'applique à montrer comment la vraie nature des « quantités infiniment petites » doit être entendue, puis craignant sans doute que les lecteurs, dans le cours de leur travail, ne perdent de vue ses définitions et ses explications, et ne se laissent influencer par l'impropriété des expressions infinitésimales, s'astreint, chaque fois qu'il en emploie une, à les mettre en garde, par le moyen indiqué plus haut, contre toute équivoque ou toute ambiguïté.

Bien qu'il ne le dise pas, et qu'il attribue l'existence d'idées vagues à une étude trop sommaire, on peut supposer qu'il pensait comme nous; c'est-à-dire que ces idées vagues étaient, au moins en grande partie, la conséquence d'expressions mal choisies.

Il eut été préférable que, abandonnant ces expressions, il adoptat celles dont se servit Pascal, un jour que l'illustre savant se trouvait dans le cas d'avoir à parler des mêmes choses et, que l'expression de « quantités infiniment petites » n'avait pas encore été inventée. Carnot connaissait si bien, d'ailleurs, les expressions Pascaliennes que lui-même les signale aux lecteurs, à propos de son exposé de la géométrie des indivisibles qui, imaginée par Cavalerius eut une grande vogue avant l'apparition du Calcul infinitésimal, et permit à Pascal de faire quelques-unes de ses découvertes. Carnot, citant donc un écrit de Pascal, le fait suivre d'un commentaire dont nous extrayons ce qui suit:

« Ce passage est remarquable non seulement en ce qu'il prouve « que les géomètres savaient très bien apprécier le mérite de la « méthode des indivisibles; mais en ce qu'il prouve que la notion « de l'infini mathématique, dans le sens même qu'on lui attribue « aujourd'hui, n'était point étrangère à ces géomètres; car il « est clair, par ce qu'on vient de citer de Pascal, qu'il attachait « au mot indéfini, la même signification que nous attachons au « mot « infini », qu'il appelait simplement « petit » ce que nous « appelons « infiniment petit », et qu'il négligeait sans scrupule « ces petites quantités vis-à-vis des quantités finies, etc... »

Nous ne laisserons pas échapper, en passant, l'occasion que Carnot nous donne et dont il n'a pas voulu profiter lui-même, de regretter que les expressions employées par Pascal n'aient pas été conservées; elles étaient préférables dans leur simplicité, à celles qui, inventées depuis et adoptées par tous les savants, sont encore en usage aujourd'hui.

Conséquences de l'adoption de l'expression « quantité infiniment petite »

1º L'expression « quantité infiniment grande » est prise dans le sens dérivé.

L'adoption regrettable de l'expression « quantité infiniment

petite » qui entraîne l'application au mot « infiniment » du sens dérivé, a pour conséquence immédiate que le même sens dérivé doit être également attribué à l'expression « quantité infiniment grande ». La définition de l'« Infiniment grand » qui se déduit, comme on sait, de la notion de l'« infiniment petit » est la suivante:

L'unité divisée par une quantité « infiniment petite » est ce qu'on nomme une « quantité infiniment grande ».

On se rend compte qu'une fraction ayant pour numérateur l'unité et pour dénominateur une quantité très petite, mais finie, est elle-même une quantité finie, pouvant être exprimée en chiffres. C'est donc une quantité très grande, excessivement grande si l'on veut, et si on l'appelle « quantité infiniment grande », c'est que là encore, l'infini est pris dans son acception dérivée.

2º Dans le Calcul Intégral c'est, suivant les cas, l'un ou l'autre des deux sens qui est applicable.

Nous avons encore à noter une autre conséquence qui ne s'applique qu'à la deuxième partie de l'analyse infinitésimale, c'est-à-dire au Calcul intégral dont les opérations consistent à faire la somme d'une infinité d'infiniments petits; que ceux-ci soient des longueurs des surfaces ou des volumes.

L'idée, très ancienne, et dans laquelle on doit voir l'origine du Calcul intégral, d'étudier les propriétés d'une courbe en la remplaçant par un polygone inscrit ou circonscrit, dont le nombre des côtés peut être aussi grand que l'on veut, se rencontre fréquemment dans les traités de mathématiques, où elle est formulée comme suit, ou de manière analogue.

« En regardant une courbe comme un polygone d'un nombre « infini de côtés chacun infiniment petit... »

Partant des conventions sur les infiniments petits ce membre de phrase est absolument correct, mais cela n'empêche que si l'on considère un infiniment petit lorsqu'il a atteint sa limite zéro, ce que beaucoup de mathématiciens considèrent comme légitime (voir la deuxième partie de cet opuscule), le même membre de phrase libellé comme suit, serait tout aussi correct.

« En regardant une courbe comme un polygone d'un nombre « infini de côtés chacun égal à zéro... »

Seulement dans ce cas spécial il est clair que le mot « infini » serait pris dans son sens étymologique ou primitif.

Ainsi, suivant que l'« infiniment petit » est considéré pendant la période où il passe par la série de ses valeurs décroissantes, ou bien au moment où il atteint la valeur zéro, le mot « infini » est pris dans son sens dérivé ou dans son sens étymologique.

Voilà donc encore une complication et, une raison de plus pour remplacer l'expression « infiniment petit » par une autre plus juste.

En recourant, par exemple, aux expressions de Pascal, le libellé deviendrait le suivant.

« En regardant une courbe comme un polygone d'un nombre « très grand de côtés très petits... »

Ou bien en adoptant la proposition de l'Abbé Moreux, il se présenterait comme suit:

« En regardant une courbe comme un polygone d'un nombre « infini de côtés indéfiniment petits... »

Ou d'autres façons encore, pourvu que le mot « infini » y soit remplacé par un autre choisi d'un commun accord entre savants.

II.

Dans les années qui suivirent la publication des travaux de Leibniz relatifs à l'Analyse infinitésimale, le nouveau calcul suscita de nombreuses controverses parmi les mathématiciens, qui se partagèrent en deux camps.

Il s'agissait de déterminer la véritable nature des infiniment petits. Suivant les uns ces quantités, tout en pouvant devenir aussi petites qu'on le veut, devaient toujours être différentes de zéro; suivant les autres, au contraire, elles devaient être toujours égales à zéro.

Nous ne pouvons mieux faire que de citer Euler, qui dans la préface et le chapitre 3 de son ouvrage *Institutiones Calculis Differentialis*, 1755, expose avec une grande clarté les deux points de vue.

Premier point de vue:

« La plupart de ceux qui enseignent les lois du Calcul intégral