Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1928)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPRIÉTÉS D'UNE SUITE DE NOMBRES ENTIERS

Autor: Niewenglowski, B.

DOI: https://doi.org/10.5169/seals-21870

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PROPRIÉTÉS D'UNE SUITE DE NOMBRES ENTIERS

PAR

B. Niewenglowski (Paris).

1. — Posons

$$u_x = x^2 + x + 41 = x(x + 1) + 41$$
.

x désignant un nombre entier arbitraire. Pour la commodité du langage nous dirons que x est le rang de u_x , et nous appellerons la suite des nombres u_x , suite d'Euler.

L'identité

$$x^2 - x = (x - 1)^2 + (x - 1)$$

donne

$$u_{-x} = u_{x-1}$$

ainsi:

$$u_0 = 41$$
 , $u_1 = 43$, $u_2 = 47$... $u_{-1} = 41$, $u_{-2} = 43$, $u_{-3} = 47$...

Il sera donc superflu de donner à x des valeurs négatives.

2. — Soit p un nombre premier autre que 2; supposons qu'on puisse donner à x une valeur telle que

$$u_x = Mp$$
.

Je dis qu'on pourra toujours supposer x < p car si

$$x = p \cdot q + r , \qquad r < p$$

on voit immédiatement que

$$u_x = Mp + r^2 + r + 41$$

et par suite on aura

$$r^2 + r + 41 = Mp . (1)$$

Il existe alors une autre valeur de x, également inférieure à p, soit s, telle que l'on ait aussi

$$s^2 + s + 41 = Mp . (2)$$

Pour que l'égalité (1) entraîne (2), il faut et il suffit que

$$s^2 - r^2 + s - r = Mp \tag{3}$$

ce qu'on peut écrire ainsi:

$$(s-r)(s+r+1) = Mp$$
 (4)

et cette égalité équivaut à

$$\begin{vmatrix}
s - r = \lambda p \\
s + r = \mu p - 1
\end{vmatrix}$$
(5)

λ et μ désignant deux entiers.

Pour obtenir les solutions comprises entre 0 et p, on prendra

s = r

 et

$$s = p - 1 - r$$

car on suppose $r \leq p - 1$.

On peut encore mettre la formule (5) sous la forme

$$s = r + \lambda p$$

$$s = p - 1 - r + \lambda p$$
(6)

λ étant un entier arbitraire.

3. — Remarquons que x = p ne peut être une solution que si p = 41, et il en est de même pour x = 0. On voit d'ailleurs que si p = 41, on a

$$x = 0$$
 , $s = 40$, $u_0 = 41$, $u_{40} = 41^2$.

4. — Cherchons dans quel cas s = r, c'est-à-dire

$$p-1-r=r \quad \text{ou} \quad r=\frac{p-1}{2}.$$

On doit, dans ce cas, avoir

$$\left(\frac{p-1}{2}\right)^2 + \frac{p-1}{2} + 41 = Mp$$
,

d'où

$$(p-1)^2 + 2(p-1) + 164 = Mp$$

et en simplifiant

$$163 = M\rho .$$

Mais 163 est premier, dans p = 163 et

$$s = r = 81$$
.

Effectivement

$$81^2 + 81 + 41 = 81 \times 82 + 41 = 6683 = 163 \times 41$$
.

En résumé, si $p \neq 163$, on saura que l'on a aussi $r \neq s$.

5. — Cherchons maintenant à quelle condition n désignant le plus petit des nombres r, s qui correspondent à un nombre premier p, on a:

$$u_n \ge p^2 \; ; \tag{7}$$

nous suivons ainsi une indication précieuse fournie par Monsieur Chatelet, recteur de l'Académie de Lille.

L'égalité

$$r+s=p-1$$

montre que

$$n < \frac{p-1}{2}$$
 ,

car nous excluons le cas de p = 163.

On voit ainsi que

$$p > 2n + 1$$

et par suite l'inégalité (7) supposée vérifiée donne

$$n^2 + n + 41 \ge p^2 > (2n + 1)^2$$

d'où

$$3n(n+1) < 40$$

et par suite

$$n < 4$$
.

On est parvenu ainsi à une condition nécessaire, mais nullement suffisante. On voit en effet que

$$u_0 = 41$$
 , $u_1 = 43$, $u_2 = 47$, $u_3 = 53$.

Ces nombres sont premiers, ils ne vérifient donc pas l'inégalité (7); mais si $u \ge 4$ l'inégalité (7) se change nécéssairement en l'inégalité contraire

$$u_n < p^2$$
.

6. — Cherchons maintenant les multiples des nombres premiers u_0 , u_1 , u_2 , u_3 qui se trouvent dans la suite d'Euler et déterminons les rangs de ces multiples, en nous bornant aux plus petits, c'est-à-dire en appliquant la formule (6) avec $\lambda = 1$. Voici les résultats

pour
$$\rho = u_0$$
, $41 - 1 - 0 = 40$, $0 + 41 = 41$,
pour $\rho = u_1$, $43 - 1 - 1 = 41$, $1 + 43 = 44$,
pour $\rho = u_2$, $47 - 1 - 2 = 44$, $2 + 47 = 49$,
pour $\rho = u_3$, $53 - 1 - 3 = 49$, $3 + 53 = 56$.

Pour chacun des nombres premiers u_0 , u_1 , u_2 , u_3 les rangs de leurs multiples faisant partie de la suite d'Euler, formeront deux progressions arithmétiques de raison égale au nombre premier envisagé. Ainsi les multiples de u_0 ou 41, supérieurs à 41, occuperont dans la suite d'Euler les rangs

$$40$$
, $40 + 41$, $40 + 41 \times 2$, $40 + 41 \times 3$...

pour 43, on trouvera

41,
$$41 + 43$$
, $41 + 43 \times 2$, ...
44, $44 + 43$, $44 + 43 \times 2$, ... etc.

On voit aussi, par exemple, que u_{41} doit être multiple de 41 et de 43: effectivement

$$u_{41} = 41 \times 43$$
.

De même

$$u_{44} = 43 \times 47$$
, $u_{49} = 47 \times 53$.

Remarquons encore que

$$u_{40} = 41^2$$
.

comme on devait s'y attendre à cause de l'identité

$$(a-1)a + a = a^2$$
.

Depuis le 5^{me} jusqu'au 40^{me} terme de la suite d'Euler, aucun des termes de cette suite n'est divisible par aucun des quatre premiers.

- 7. Lemme. Tout entier inférieur au carré de son plus petit diviseur premier est un nombre premier. Soit p le plus petit diviseur premier d'un nombre entier a. On voit tout d'abord que a ne peut être une puissance de p puisqu'il est inférieur à p^2 , par hypothèse. Si a est composé, il admet donc un diviseur premier q, plus grand que p, alors il est divisible par pq, donc plus grand que p^2 , ce qui est contraire à l'hypothèse. Il est donc nécessaire que a = p.
- 8. Théorème. Les quarante premiers termes de la suite d'Euler sont premiers. Nous savons déjà que les quatre premiers termes sont premiers. Considérons le 5^{me} terme, c'est-à-dire

$$u_4 = 4 \times 5 + 41 = 61$$
.

Soit p le plus petit diviseur premier de u_4 ; p est différent de chacun des nombres premiers u_0 , u_1 , u_2 , u_3 , puisque les multiples de ces nombres sont des rangs supérieurs à 39. Donc la plus petite solution de l'équation $u_2 = Mp$ est a = 4, et comme cette solution est supérieure à 3, il résulte de la remarque de Monsieur Chatelet (5), que $u_4 < p^2$. Donc enfin $u_4 = p = 61$. En outre les multiples de u_4 ont des rangs au moins égaux à 60, les formules (6) donnant 61 - 1 - 0 = 60, 0 + 61 = 61, etc.

Ce qu'on vient de dire pour u_4 , on le répétera pour u_5 , puis pour u_6 et ainsi de suite, de proche en proche, jusqu'à u_{39} . Les nombres

$$u_0$$
 , u_1 , u_2 , ... u_{39}

sont donc premiers.

Le premier nombre composé de la suite est $u_{40} = 41^{\circ}$.

9. — Généralisation. — Soit

$$u_x = x^2 + x + a ,$$

a étant impair. Si a est premier supérieur à 2, on peut se proposer de chercher dans quel cas les nombres

$$u_0$$
, u_1 , ... u_{a-2}

sont premiers.

Cherchons en premier lieu dans quelle condition ou autre $r=s=\frac{p-1}{2}$. En raisonnant comme précédemment, on obtient la condition

$$4a - 1 = Mp.$$

Donc p devra être un diviseur de 4a - 1.

Ensuite on écrira $u_x \geq p^2$, ce qui conduira à l'inégalité

$$3u^2 + 3n < a - 1$$
,

d'où

$$n < \alpha$$
.

Si $\alpha < a - 2$, et si les nombres

$$a_0$$
 , a_1 , ... $a_{\alpha \rightarrow 1}$

sont premiers, la suite de terme général u_x sera composée de nombres premiers, depuis x=0 jusqu'à x=a-2.

10. — Exemples. I. a = 17.

La condition r = s donne Mp = 67, d'où

$$p = 67$$
 et $r = 33 > a - 2$.

En outre, l'inégalité

$$3n^2 + 3n < 16$$

donne

or

$$u_0 = 17$$
, $u_1 = 19$.

Ces deux nombres sont premiers. Donc

$$u_0$$
 , u_1 , u_2 ... u_{15}

sont premiers, comme on le vérifie aisément.

II. Supposons a = 19.

La condition r = s, donne

$$7s = Mp$$
,

donc p = 3 ou p = 5

Si
$$p = 3$$
, $r = 1$, $u_1 = 21$

Si
$$p = 5$$
, $r = 2$, $u_2 = 25$.

La condition

$$3n^2 + 3n < 18$$

donne

$$n < 2$$
.

On vérifie bien que la réciproque relative à $u_x \ge p^2$ n'est pas vérifiée. On a bien $u_1 > 3^2$, mais on n'a pas $u_1 > 7^2$, on n'a pas non plus, $u_2 > 5$. Or, la condition

$$3n^2 + 3n < 18$$

pour n=2, donne

$$3.2^2 + 3.2 = 18$$

et d'ailleurs les inégalités sont toutes remplacées par les égalités, on a en effet écrit

$$u_n \ge p^2$$

et

$$r_p = \frac{p-1}{2}$$

donc

$$u_n \ge (2n+1)^2$$

d'où

$$3n^2 + 3n \le 18$$
.

Les 18 premiers nombres de la nouvelle suite ne sont donc pas tous premiers

$$u_0 = 19$$
 , $u_1 = 21$, $u_2 = 25$, $u_3 = 31$, $u_4 = 39$, etc.

11. — Remarque. Dans un livre paru récemment (Questions d'Arithmétique, librairie Vuibert), j'ai montré que si un nombre de la forme $u^2 \pm u + 1$ est premier, il est égal à 3 ou à un nombre premier de la forme 6u + 1. La réciproque n'est pas vraie. Pour l'établir, je considérerais la forme $x^2 + x + 1$, puisque les deux

formes $x^2 + x + 1$ et $x^2 - x + 1$ sont équivalentes. Soit un nombre premier 6u + 1; l'équation

ou
$$x^{2} + x + 1 = 6n + 1$$
$$x(x + 1) = 6n$$
 (8)

ne peut avoir de solution que si 6*u* peut être mis sous la forme du produit de deux entiers consécutifs. Cette condition peut s'exprimer de la manière suivante. L'équation (18) peut se mettre sous sa forme

 $\left(x + \frac{4}{2}\right)^2 = 6n + \frac{1}{4}$

ou

$$(2x+1)^2 = 24n + 1.$$

Il faut et il suffit que 24n + 1 soit un carré, nécessairement impair. Or cette condition n'est pas toujours remplie. Si n = 1, on a x = 2, ce qui donne

pour
et

$$n = 2$$
, $x = 3$
et
 $3 \times 4 + 1 = 13$,
pour
 $n = 5$, $x = 5$
et
 $5 \times 6 + 1 = 31$,

et l'on aura facilement d'autres exemples. Mais l'équation

donne x(x+1) + 1 = 19x(x+1) = 18

et 18 n'est pas le produit de deux entiers consécutifs. D'ailleurs, n = 3; donc

$$24n + 1 = 73$$

et 73 n'est pas un carré.

De même $97 = 6 \times 16 + 1$; 96 n'est pas le produit de deux entiers consécutifs. On peut aussi remarquer que $4 \times 96 + 1 = 385$ n'est pas un carré; donc l'équation

$$x^2 + x + 1 = 97$$

est impossible.

12. — Remarquons encore que l'équation

$$x^2 + x + 1 = 3$$

a pour solution x = 1; mais il est impossible de résoudre en nombres entiers l'équation

$$x^2 + x + 1 = 3^n$$

en supposant n > 1. Cette équation peut être écrite sous la forme

$$(2x + 1)^2 = 3(4.3^{n-1} - 1)$$
;

les deux facteurs 3 et 4.3^{n-1} — 1 dont le premier n'est pas un carré sont premiers entre eux; le second membre n'est donc pas un carré, sauf si n=1.

Il résulte de là que si x est plus grand que 1, $x^2 + x + 1$ a nécessairement des diviseurs premiers de la forme 6n + 1.

13. — Considérons enfin les entiers de la forme

$$y = ax^2 + bx + c$$

a, b, c, x désignant des entiers.

On a, si b est impair, soit b = 2h + 1,

$$ay = (ax + h)^2 + (ax + h) + c - h(h + 1)$$

ou, z désignant l'entier ax + h et posant c - h(h + 1) = k,

$$ay = z^2 + z + k$$

On est ainsi ramené à une forme particulière.

14. — Si
$$b = 2h$$
,
 $ay^2 = (ax + h)^2 + c - h^2$

ou, en posant z = ax + h, $c - h^2 = l$,

$$ay^2 = z^2 + l$$

Pour plus de détails voir un travail d'Albert Lévy, professeur au lycée S^t Louis, ayant pour titre: Sur une méthode du calcul des idéaux d'un corps du second degré. Comptes rendus du Congrès de Toronto (Canada, 1924).