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SUR LE MOMENT DE DEUX DROITES 65

Done

T — w, fi(z, w) — 2z, u) .

Ainsi les éléments du connexe bilinéaire pour lesquels le
moment (au sens du n® 2) est nul appartiennent au connexe iden-
tique ou & f;(z, u) = 0, — ce n’est qu’un cas particulier de ce
qui a été dit au n° 2 pour le connexe général.

Enfin, si I’élément (z, u) n’appartient pas au connexe (1), le
moment de (z, u) et de son transformé par (1) est nul, s’il appar-
tient au connexe (2, 2)

u,fy(z u) — Pz, u) = 0

dans lequel & chaque droite u correspond une courbe de 2®€ordre
ayant double contact avec la conique dégénérée — paire de
droites u et u” et pour corde de contact la droite u’, si 'on
désigne les transformées collinéaires successives de u en collinéa-
tion (1) par u’, u”, ...

Réciproquement, au point donné z appartient une courbe de
ome clagse passant par les points x, 2" et dont les tangentes corres-

pondantes se coupent en x’.

§ 6. — Le moment dans la théorie des connexes avec
élément (point, plan).

Comme j’ai indiqué au commencement, la notion du moment
de deux droites trouve son application danslathéorie des connexes
quaternaires ayant pour I’élément la combinaison (point, plan).
Si Uon prend deux éléments pareils (z, u), (y, ¢), leurs points x, y
déterminent une droite p = (xy), et leurs plans u, ¢ une autre
p’ = (uv¢). On peut donc déterminer le moment de ces droites,
et c’est ce que je nomme le moment de deux éléments du connexe
(z, u).

Son expression analytique s’exprime par la formule
Ly Xy Xy Iy
Yo Y2 Ys Y

, p ' ' Yz — xoy) (w, v, — v, i=1,2,3,4 ,
p. p, P D (% vy, R Y (w5 9y, kY )

Il

4 ’ ’ 14

p, P, P, P,
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car p/, = my, = (uyv,) et ainsi de suite.
Done, a un facteur pres, nous avons

M) = v
] yv) = <"ixi"hyh—"kxkuiyi_Vixi”kyk‘l‘“kxk"iyi)

I

2 (u, vy, — U, Vo) -

Prcnons un élément (x, u) quelconque et son correspondant
dans le connexe conjugué (y, ¢). Nous aurons pour le moment de
ses deux éléments

() = 2 (2L e ).

(y, v ca dou; dx;
parce que
of of
R A e
1 kR
done
of .
oo, = Su.—— = n.flx, u),
oy = Sugl =gl
} of ,
G B, = DT = m.f(x, u)
& k ’
bxk
Si I’élément (z, u) appartient au connexe f(x, u) = 0, son

moment par rapport a I’élément correspondant du connexe

conjugué devient
: of  of
.M <xu) == zlx.E—[. 2 .

Yy 0 u; bxi

-

Ainsi, st [’élément (x, u) appartient a la coincidence principale
du connexe donné
(flex, u) =0, u, = 0)

ou son correspondant (y, V) appartient & la coincidence principale
du connexe conjugué, le moment de ces deux éléments est nul.

La réciproque est vraie: si le moment d’un élément du connexe
donné et de son correspondant au connexe conjugué est nul, 'un ou
Pautre appartiennent @ la coincidence principale correspondante.

Nous pouvons dire encore: Si pour chaque élément du connexe
donné f.(x, u) = 0 nous avons

g of ™ _
bxl ou

’
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ou si 'on a 1dentiquement

pY of —bizk.f(x, u)

bx bui

le moment de chaque élément et de son conjugué au connexe
f (zu) = 0 est nul. Dans ce cas le connexe conjugué du (1) est le
connexe identique .

§ 7. — Moment de deux droites dans la théorie des connexes aux
éléments (point, droite) dans le Rg.

1. — Considérons un connexe lineo-linaire défini par I’équation
Za; %Py =0 (1)

que 'on peut écrire aussi

1 1

ou symboliquement

a, (aapp) = aa

De ’ensemble des oo? éléments (point, droite) de 1’espace,
I’équation (1) détache oof éléments, que ’on peut caractériser
de cette maniére: & chaque point X correspondent (c’est-a-dire
forment avec X I’élément de la configuration) 3% droites du
complexe linéaire

P(z) = 205 py; = 0 ; (2)

parmi ces complexes il y a o? complexes spéciaux, qui corres-
pondent aux points d’une surface du 2me ordre

(I)(l) (I)(l) s (I)(l) (1) (I)(l) ‘D(l) = ] E.ax a; (ab a/b/) ) (3)

A chaque point de cette surface correspond une droite, avec

1 Ceci donne I’idée de considérer les connexes qui sont des transformations rationnelles
du connexe identique: si nous avons un connexe quaternaire

Spoep(x, wdp(x, u)y = 0 (R=1..4)

oll o7 — du degré k en x et du h en u, et ¢, — du degré m — k en x, n — h en u, a I'aide
de la transformation ¢uj = ¢4 (x, u), v = 4z (x, u), nous le transformons en vy = 0.
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