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58 D. SINTSOF

Il est & remarquer que le facteur

72V, P

0.sin X sin p sinv

ne dépend que du choix du tétraédre de référence; il est le méme
pour tous les quatre points choisis M, M’, M”, M'".

§ 3. — Moment de deux droites.

La plus courte distance de deux droites de 1’espace

L — b _ o N —c’
I R A e

l m n U m n

- est donnée par la formule

a" —a bV —0b ¢ —c
8 = l m n : VE(mn” — nm’)? (2)
l m’ n’
ou bien
a’—a b—0b ¢ —c
d = l m n tsin V. V2 4+ m2 + n2. Y2+ m’2+ n?
U m’ n’ (29)

ou V est ’angle de deux droites. L’expression devient plus simple:
st I, m, n, I',) m', n’ désignent les cosinus des angles, alors
2+ m24 n2=1 =124 m'?+ n'2 Nous avons

a —a U —b ¢ —c¢

6.sinV = l m n x (3)
U m’ n’

Le produit ¢ .sin V est ce qu'on appelle le moment de deux
droites (1) et (1'). Le déterminant a droite égalé & zéro exprime
que les deux droites se coupent. On peut donc dire que les deux
droites de l'espace se coupent si leur moment s’annule, —en d’autres
mots, si leur plus courte distance est nulle, ou bien si elles font
un angle nul, c¢’est-a-dire si elles sont paralléles.

Dans les deux cas le volume d’un tétraedre quel’on congoit en
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prenant une paire de points sur chacune des deux droites,
doit étre nul; il est donc naturel de chercher relation entre le
moment et le volume de ce tétraedre.

Sil'on a déja établi 'expression (1) de la plus courte distance
il est facile de trouver cette relation. En effet, si 'on prend un
point (x, ¥, z) sur la droite (1) et un autre (', ', z’)sur(1’), on a

P ’
xl_—a l/___ xl—_:a‘

- VW—— a)? T I/E(x: — az')2

Le déterminant au numérateur est égal a six fois le volume
du tétraédre (x,, a, a’, x}), et les racines carrées au dénominateur
représentent les longueurs des arétes opposées, c’est-a-dire

6V

60.sinV = id.d' . (%)

Cette relation se simplifie si I’on prend les points x,, x; de ma-
niere que d et d’ soient égales & I'unité de longueur. Elle exprime
le théoreme connu de géométrie du tétraedre: st l'on prend sur
deux droites gauches deux longueurs finies, le volume du tétraédre
ainst obtenu ne varie pas st Uon fait glisser ces longueurs le long
des droites respectives sans changer leur valeur.

Cette relation entre le moment de deux droites et le volume a
déja été donné par Cayley. Il établit la formule (4) de deux ma-
niéres différentes. |

10 La section du tétraedre par le plan parallele aux deux
arétes opposées a la distance de z et & — z des deux extrémités
de la plus courte distance ¢ a pour aire

dd’(d :_ZL

52 sinV .

En intégrant entre les limites 0 et ¢, on obtientle volume du
tetraedre

5

"® — 1

V = fMB“’ Z)zsinV.dz = -é-dd’B sinV
0

La 2me méthode est encore plus élémentaire. En ce point le

texte de Gayley contient une faute de rédaction, il dit: par une
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des arétes qui ne se coupent pas menons un plan.perpendiculaire
a Uaréte opposée (ce qui est en général impossible et veut dire:
perpendiculaire & la plus courte distance des deux arétes). Le
tétraédre est décomposé en deux tétraédres ayant pour base
commune un triangle; le volume entier est égal a la somme (ou
différence) des volumes de ces deux tétraedres.

V=—§-b‘.(k1ih2), hxih?!:d’SinV& et S_—a—é

ce qui ramene a la formule (4).

En résumé, a ’aide des développements du § 2 nous pouvons
dire, qu’en coordonnées homogénes tétraédriques le moment de deux
droites s’exprime — jusqu’a un multiplicateur dépendant seulement
du choix du systéme de coordonnées — par le déterminant composé
des coordonnées des deux paires de points pris sur les deux droites.
Cette remarque va étre mise & profit dans la suite.

§ 4. — Expression du moment de deux droites
en coordonnées de la droite.

Prenons les coordonnées homogenes de la droite piy, liées par
la relation |

P = (p, p) = P1sPss + Pr1aPsp + PraPss = 0 - (1)

La condition pour que deux droites p et p’ se coupent est

alors '
: oP ’ ' '
, 4 = 2 —— . = O . 2)
(P, P’) Sy ik (

Ce n’est autre chose, & un facteur prés, que le volume du
tétraédre formé par deux segments de longueur 1 pris sur 'une
et I’autre droite. En effet, si x, y sont deux points de la premieére
droite, on a

Py = TiYr — T Y;

a un facteur prés; si £, » sont deux points de la seconde,

’

Py = Eink - Ekni H
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