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SUR LE MOMENT DE DEUX DROITES 53

données homogeénes des trois points et I’aire du triangle qu’ils
forment. o ‘
Passons & ’espace. o

§ 2. — Le volume d’un tétraédre en coordonnées tétraédriques.

Prenons pour le systéme des coordonnées tétraédriques
z, Y, % t, les quatre perpendiculaires abaissées d’un point M
sur les quatre plans d’un certain tétraédre fondamental. Soient
A, B, G, D les 4 sommets, «, 8, y, ¢ les‘aires des faces opposées,
on a , T
e.x+B.y+y.24+08.1=3.V,. (1)

xay7zrt , xyz'l

’ / . !
., oy, 2, ) 3V ay 1 @
” ” " e . k :
., Y, o, 0 x"y" "1
oy, 2", Z" " 2" q

Choisissons a présent un systéme des coordonnées non-homo-
génes obliquangles ayant pour plans les 3 plans du tétraedre
fondamental — alors z, parexemple est la hauteur du Iparallele-

pipede dont les arétes sont y, x, z, — de sorte que z'= z cos (z 2)
(fig. 2). e
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De méme
y=y-cos (y, y ,
x=;.cos(x, ;)
Ainsi
1 by B 7 3V0 -\ . ‘
(xy"2"t") = (x.y" .z '1)'_5— cos (x, x).cos (y, y) cos (z, z) .

Du point O comme centre décrivons une sphére de rayon 1,

soient X. Y, Z les 3 points de rencontre de cette sphére avec les
axes des coordonnées obliques; soient

9YOX =%, <9XOZ =y, <)YOZ=y.

Nous aurons un triangle sphérique, dont les hauteurs (fig. 3)

A

Fig. 3.

sont & calculer. Désignons les angles du triangle sphérique XYZ
respectivement par X, Y, Z.
Alors

sin h." = sin p..sin X = sinv.sin Y .
Soit
A+ p+v=2s.

D’apres les formules connues de la trigonométrie sphérique

X 2Vsins.sin(s—)\).sin(s———*p).sin(s—v) 2VP
sin X =

sin A . sin 1)

sin A sin .’
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De méme N
21VP 2VP
sinY=—,——2—1P—,-—, siu:=——.-——\{—.—-—.
sin A.sin v sin v sin p.
Done
: - 2VP
sin b, = cos (, z) = e
. - 2P
sin Izp = cos (y, y) = S !
- 2VP
sin o, = cos (x, x) = V
/ sin v
Ainsi
8.3.V p*2 e
L A ‘ 0, . 7 N 1 . 3
g a ey b sin)\sinp.sinv(xyz' ) (3)

Mais ce n’est pas encore la relation définitive. Il est intéressant
| d’établir le multiplicateur exact. Introduisons un systéme de
. coordonnées dont axe Of coincide avec Paxe OX, OH étant
. situé dans le plan XOY et perpendiculaire & OX, enfin OZ étant
||  perpendiculaire au plan XOY.

Nous aurons pour le tableau des 9 cosinus:

0= OH (01/
| ox | 1 0 0
x oY cos A sin A 0
’ 0z cos . cos U cos W

Les angles U et W sont & déterminer & 'aide des relations de

la forme
1

cos A

cos .

COSs &

cos A
1
cos v

cos 3

COS .
cos v

1

Cos v

cos a

cos 3

cos y
1

(4)

Pour déterminer cos W nous substituons les angles de OZ :

1 cos A cos u 0

cos’ A 1 cos v 0

COS U COS V 1 cos W gl
0 0 cos W 1.
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ce qui donne

1 cos A cos
0 = | cos A 1 cos v .

cos u cosv 1 — cos?W

ou enfin
4P — cos® W . sin? A =0,

d’ou l'on tire

sin A

cos W = —+ _\/f’_ (5)

De méme pour le calcul de cos U nous avons & substituer dans
(4) les angles de OH, ce qui donne

1 cos A cosu O
cos A 1 cos v sin A . COS v — €OS A COS u.
0 = ‘ ‘ , dou cosU = Y ,
COs . €OS v 1  cosU 7 . sin
0 sinA cosU 1 = (6)

e

Ainsi les formules de transformation deviennent

‘(—}—Ycosl—l—Zcosp-—E

4cosl—{—Y—]—Zcosv—Ecosl—}—‘qsm)\ .

_ Y — cos X 2VP
X c +Ycos~/+Z Ecosu—l—qms' cos COS'U'—}-C V .

sin A

Formons & présent le déterminant

cosz—cos)&cosp_{_c 2YP

€ ,8 cosA + 7 sind, § cos w47 sin A sin A

» AN 2 y.— cos A 2P
£, % cosk + 0 sink, £ cosy + 7 €O v ©08 COSP—}-U -—v—-

sin A sin A

(4 (/PN 14 o /4 ' (,” cos vy — COS )\ cos P' (/4 2‘/5
&, & cos k4w sink, CQ?y,U-—%—"q sin A + e sin A
" " m " m CO8 ¥ —- CO8 A cos ' " 2 VP
£, £ cosh 4 7 sml,icoszx-}—nf S + ==
Il est égal, comme il est facile & voir, a

Eon (1 '

Pt o4 21/P ' _

T U 2YP _ev 2 yF . (7)

EII ,qu :l/ 1 sin )\ .

EIII nlll ‘g”l 1
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Mais, d’autre part, ce déterminant est égal a
X 4Y cosh+Z cosp, X cosh+Y +Z cosv,X cosp+Y cosy+7Z , 1
X +Y _co‘s‘)\—}’—:-Z_7 cos ., X’ posk—{f? —|—Z’ cosv, X/ cosp’.’—l—?’ cosv~}-z7 , 1
Y"—}—Wcosi—{—i’—'cos TN ;‘-{_ﬁcos)\—}—?’—' —;—.Zjﬁcosv,r Fcosp.—l—?—'—'m@ +Z", 1

3-{’7’+Y_-’”cos)x—}—Z—'”cos My .}Z’Wcosl—l—Y’ﬁ—}——ﬁcos v, X" cos p.—}——Y—’d”cosv —I—_ZW, 1

ue 1’on transforme facilement en
q

X -X)+(Y' -Y) cos \+(Z* ~Z) cos v,
¢ -si)cq_s (Y —_Y)+(—Z—’ ~Z)cosv , (:‘Z’;—-}Z) cos p+ (? -_'Y).gqs;w(i' ~7)
(X" -X)+(Y" -Y) cos \+(Z" -Z) cos p. ,

(X" =X) cos AF(Y"' =Y)+(Z" -Z) cosv , (X" ~X) cos p+(Y"-Y) cos vt (Z" -Z)

(X7-X)+(Y"-Y) cos A+ (W’—Z) cosp. , |

-
r=

(X7-X) cos A+ (Y7=Y)+(Z""-Z) cos v , (X7-X) cos p+ (YY) cos v+ (Z7-Z)

X —X,Y Y, 7 —7% 1 cCoOsS A cos u.
= | X" =X, Y'Y, Z" —7 | > | cos\ 1. cosv |
Y'W_—i, _Y_:’-’_’—-'Y-, 72 A COS . COSV 1

X Y 7Z
X Y 7

ll

X" Y' 7" 1

X7 YT 771
Done, revenant a la formule (A) nous aurons:

. 8.3V P 6V.2V/P
QU LU _
(xy” 2" 2") S sin A sin p sinv 4P

Donge, enfin

o y & ¢ | gay,. p

= = - —.% .« [B
xu _y/r ‘Z"' t" ‘8 Sln)\ Slny. sin vy » ()

244 ’
z "ylli ZIH tll

c¢’est la- formule, que nous voulions établir.
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Il est & remarquer que le facteur

72V, P

0.sin X sin p sinv

ne dépend que du choix du tétraédre de référence; il est le méme
pour tous les quatre points choisis M, M’, M”, M'".

§ 3. — Moment de deux droites.

La plus courte distance de deux droites de 1’espace

L — b _ o N —c’
I R A e

l m n U m n

- est donnée par la formule

a" —a bV —0b ¢ —c
8 = l m n : VE(mn” — nm’)? (2)
l m’ n’
ou bien
a’—a b—0b ¢ —c
d = l m n tsin V. V2 4+ m2 + n2. Y2+ m’2+ n?
U m’ n’ (29)

ou V est ’angle de deux droites. L’expression devient plus simple:
st I, m, n, I',) m', n’ désignent les cosinus des angles, alors
2+ m24 n2=1 =124 m'?+ n'2 Nous avons

a —a U —b ¢ —c¢

6.sinV = l m n x (3)
U m’ n’

Le produit ¢ .sin V est ce qu'on appelle le moment de deux
droites (1) et (1'). Le déterminant a droite égalé & zéro exprime
que les deux droites se coupent. On peut donc dire que les deux
droites de l'espace se coupent si leur moment s’annule, —en d’autres
mots, si leur plus courte distance est nulle, ou bien si elles font
un angle nul, c¢’est-a-dire si elles sont paralléles.

Dans les deux cas le volume d’un tétraedre quel’on congoit en
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