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SUR LE MOMENT DE DEUX DROITES 53

données homogènes des trois points et l'aire du triangle qu'ils
forment.

Passons à l'espace.

§ 2. — Le volume (Lun tétraèdre en coordonnées tétraédriques.

Prenons pour le, système des coordonnées tétraédriques
x, y, <f, les quatre perpendiculaires abaissées d'un point M
sur les quatre plans d'un certain tétraèdre fondamental. Soient
A, B, C, D les 4 sommets, «, /3, y, ô lesMaires des faces opposées,
on a ;

a.aj+ß.y + T,.* + 8.f=.3.V0 (1)

Le déterminant

X y »
JS t X y z 1

x' y' ' z' t'
Ol

>CO

111
x' y' * i

z" f x". y" z" l
x'\ ym, zm t'" xm y'" zm 1

| Choisissons à présent un système des coordonnées non-homo-
I gènes obliquangles ayant pour plans les 3 plans du tétraèdre

fondamental — alors s, parexemple, est la hauteur du (parallélépipède

dont les arêtes sont y, x, z, — de sorte que z:== z cos (z, z)
(%• 2).
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De même

y y cos (y y)

x x cos (x, x)

Ainsi

_ oy _ _ _
(xyf z" t"f) — (x .y'. z" 1) cos (x, #) cos (?/ y) cos (z z)

Du point 0 comme centre décrivons une sphère de rayon 1,
soient X. Y, Z les 3 points de rencontre de cette sphère avec les

axes des coordonnées obliques ; soient

<) yox x <3 xoz p. <) yoz v

Nous aurons un triangle sphérique, dont les hauteurs (fig. 3)

Ä> f — (z ' z) > \ j — (y> 2/) Äv f — (* » z)

Z

Fig. 3.

sont à calculer. Désignons les angles du triangle sphérique XYZ
respectivement par X, Y, Z.

Alors
sin h. sin p. sin X sin v sin Y

Soit
X + {jl + v 2s

D'après les formules connues de la trigonométrie sphérique

Vsin s sin (s — X) sin (s — p.) sin (s — v) 2 yP
Sill X — 2 —————— - ; ~ — ; r ;

s m h sin p. sin a sm p.
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De même
2 yp" 2 yF

Donc

sin Y _sin X sm v sm v sin u.

•A / -\ >À^P
sin E — cos (z z)

sin cos (y, y)

sin h cos (x x)

sin X

2 yp
sin [jl

2VP
sin v

Ainsi
Q Q V P3/2

(xy'z''t"f) ' °- •

: ixy'z", \) (3)
8 sm X sin jjl sin v

Mais ce n'est pas encore la relation définitive. Il est intéressant
d'établir le multiplicateur exact. Introduisons un système de

coordonnées dont l'axe 0£ coïncide avec l'axe OX, OH étant
situé dans le plan XOY et perpendiculaire à OX, enfin OZ étant
perpendiculaire au plan XOY.

Nous aurons pour le tableau des 9 cosinus:

os OH OZ

ÖX 1 0 0

ÖY cos X sin X 0

OZ COS (JL cos U cos W

Les angles U et W sont à déterminer à l'aide des relations de
la forme

1 cos X cos p. cos a

COS X 1 COS V CO& ß

COS [JL COS V 1 COS Y

cos a cos ß cos y 1

0 (4)

Pour déterminer cos W nous substituons les angles de OZ :

1 cos X COS UL 0

cos X 1 cos v 0

cos p. COS V 1 cos W
0 0 cos W 1

0
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ce qui donne

ou enfin

d'où l'on tire

D. SINTSOF

I 1 cos X COS (J.

0 cos X 1 cos v

COS JJL cos v 1 — cos2W

4P _ cos2 W sin2 X 0

VP
cos W L v (5)

sin X

De même pour le calcul de cos U nous avons à substituer dans

(4) les angles de OH, .ce qui donne

1 COS X COS (J. 0

cos X 1 cos y sin X

cos p. cos v 1 cos U

0 sin X cos U 1 - (6)

0 d'0Ù COS U =r
cos v — cos X cos p.

sin X

Ainsi les formules de transformation deviennent

X -]~ Y cos X -j- Z cos fji Ç

X cos X —J— Y —j- Z cos v cos X -j- r\ sin X

- - _ cos v — cos ^ cos jj. 2 VP
X cos u. 4- Y cos v -j- Z ç cos u. 4- r. :— :— -f- 4 —r—r-k k sin X sin X

Formons à présent le déterminant

cos X + rj sin X cos a. -j- r\

?' ?' cos X -f- V sin X ?' cos -f- i\'

?" ?" cos X -j- ff sin X ?" cos jj. -j- r"

?'" ?'" COS X + y/" sin X r cos p. + v/"

Il est égal, comme il est facile à voir, à
'

S *! Ç 1

?' V V 1

?" rf r 1

?"' V" ç» 1

cos v — cos X cos V- + K
2 yp

sin X sin X

COS v — cos X cos H-

+ V
2 yp

sin X sin X

COS v — cos X cos t* + V
2 yp

sin X sin X

COS v — cos X cos u.
_1_ V" 2yp

sin X r sin X

x Sin X x 6V. 2 VP • (7)
sin X v
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Mais, d'autre part, ce déterminant est égal à

X -f- Y cos X -j- Z cos p., X cos X -j- Y -j- Z cos v X cos p. -j- Y cos v + Z ,1
X7 -j- cos ^ Z' cos H* » cos ^ + Y' + Z' cos v X' cos p. -J- Y' cos y -f- Zf 1

X"+Y77cosX + Z77cosp„ X" cos X + Y" + Z77 cos v X77 cos p. + Y^cos v + Z77, 1

SF+Y^cosX + Z^cosp., X^cosX+Y^ + Z^cos v, ^cos p. + Y"'cos v + Z\ 1

que l'on transforme facilement en

(X7 -X) + (Y' -Y) cos X+(Z^ -Z) cos p.

(X7 -X) cos X+fY7 ~Y)+(Z' -Z) cos v (X7 -X) cos p.+ (Y7 -YJcosv+fZ7 -Z)

(X77 -X) + (Y77 -Y) cos X+^Z77 -Z) cos p.

(X77 -X) cos X+(Y77 -Y)+ (Z77 - Z) cos v (X77 -X) cos p.+ (Y77 - Y) cos v + (Z77 - Z)

(X777-X) + (Y777-Y) cos X+ (Z777-Z) cos p.

(X777-X) cos X+(Y777-Y) + (Z7"-Z) cos v (Y777-!) cos p.+ (Y77'-Y) cos v + (Z777-Z)

X' — X, Y' — Y, Z' — Z

X77 -X, Y77 — Y, Z77 — Z

X777 —X, Y777 Y Z777 -—Z

X

1 cos X cos p.

cos X 1 cos v

cos p. COS V 1

tp

X Y Z 1

X7 Y7 Z7 1

X77 Y77 Z77 1

7^777 —, 2"' 1

Donc, revenant à la formule (A) nous aurons:

'»3V„ Ps/a 6V. 2 \/p

(8)

(xy' z" z'") '

Donc, enfin

a; y z t

x' y' z' V

x" y" z" l»

x'". y'" z'" V"

' sin X sin p. sin v 4P

72Yq.

sin X sin p. sin v
.Y (9)

c'est la formule, que nous voulions établir.
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Il est à remarquer que le facteur

72V0P
8 sin X sin [j. sin v

ne dépend que du choix du tétraèdre de référence; il est le même

pour tous les quatre points choisis M, M', M", M"'.

§ 3. — Moment de deux droites.

La plus courte distance de deux droites de l'espace

x — a y — b z — c x — a' y — (/ z — c'
ï ni n

' ^ 61
V °° (O

est donnée par la formule

a' — a 1/ — b c' — c

8 / m n

V m n'

ou bien

a' — a b ' _ b c' — c

8 l m n : sin V

V mf n'

: ySK — nm'Y (2)

(2')

où V est l'angle de deux droites. L'expression devient plus simple
si Z, m, n, V, m\ n' désignent les cosinus des angles, alors
l2 + m2 + n2 1 V2 + m'2 + n'2. Nous avons

>. sin Y

a' — a b'

l

V

— b c' — c

m n

mr n'

(3)

Le produit d sin V est ce qu'on appelle le moment de deux
droites (1) et (1'). Le déterminant à droite égalé à zéro exprime
que les deux droites se coupent. On peut donc dire que les deux
droites de Vespace se coupent si leur moment s'annule, —en d'autres
mots, si leur plus courte distance est nulle, ou bien si elles font
un angle nul, c'est -à-dire si elles sont parallèles.

Dans les deux cas le volume d'un tétraèdre que l'on conçoit en
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