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SUR LE MOMENT DE DEUX DROITES
ET SON APPLICATION DANS LA THEORIE
DES CONNEXES

PAR

D. Sintsor (Kharkof).

C’est & CAYLEY que nous sommes redevables de 'introduction
du moment de deux droites. Dans mon mémoire « Théorie des
connexes dans 'espace » (Annales de I’ Université de Kasan, 1895)
J’ai appliqué cette notion aux deux droites que 1’on obtient si
Pon prend deux éléments (point, plan), — l'une qui joint les
points, I’autre qui est l'intersection des deux plans, et c’est a
cette expression que j’al donnée le nom de moment de deux
éléments du connexe.

Mais 1’expression analytique que l’on établit existe aussi
pour le connexe ternaire, et j’ai donné (loc. cit., Ch. IV, remarque)
son interprétation géométrique.

Mais pour les applications il est important de montrer quels
sont les multiplicateurs numériques que l’on introduit, si 'on
prend un systéme particulier de coordonnées homogenes.

(’est par ce probleme élémentaire que je commence. Il ne me
parait pas dépourvu d’intérét. Puis je donne des applications a
la théorie des connexes.

PrREMIERE PARTIE.

§ 1. — L’aire du triangle en coordonnées homogénes
(triangulaires).
FerreRrs (Trilinear coordinates) donne ’expression pour la

distance de deux points en coordonnées homogénes. Il n’est pas
sans intérét de donner D'expression correspondante de [aire

d’un triangle.
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- Prenons pour coordonnées homogénes x, y, z d'un point M
les perpendiculaires MQ, MP, MR abaissées de M sur les coOtés
du triangle fondamental ABC (fig. 1) ayant au sommet C ’angle
w; les longueurs des cOtés opposés aux sommets A, B, C étant

a, b, ¢, on a

ax + by + ¢z = 2AABC = 2), .

(1)

Soient les coordonnées (non-homogenes) du méme point M par
rapport aux axes CA, CB, z, y. Alors

X = x.sin w

yzasinw

Fig. 1.

Dong, si 'on prend trois points M, M’, M”

2N, — ax — b

x y z x 'y L " 4

| 2N, — ax' — by’
! A ) 0 Y

y =z Xy p
x” y" z" x" y" 2A0 J— a'::I' e by"
ou, d’aprés (2)
2

S
R

R
QI@‘!QI
b — f—

.sin? w .

(2)
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‘ . . . a I
Mais si I'on fait tourner I’axe des y (CB) de I'angle 5 — o
les coordonnées nouvelles &, »n s’expriment a l'aide de z, y:
y = il x = £ — 1 cotg w .
sin o ’
Donce |
;g—/l . £ —n cotgow 7 1 . ¢ n 1
P = oot . ' = 1o
ic_g_/_l sl 8 7 cotgw 7 1 T gy 1
xl! y" 1 i E" —_ 11" COlg ) 7]" 1 E" _q" 1

: . 4. 2A , o b
ce qui est égal & ——, A étant Iaire du triangle MM’ M.
Done, dans le systéme des coordonnées homogenes, que nous

avons choisi, on a

x, y, =
2A 2A ; .
x, y, =2 .sin?2 0w = 2A .k .sin w (3)
¢ sinw ¢
x" , "’ z"

puisque 2A, = c¢. k¢, he étant la hauteur correspondant a la base

AB du triangle ABC. On pourrait encore poser 2A, = ab sin w.
Alors
X y 4
ab

'y 2| =—sinfw.A. (3%)
c

x" yll Z-"

Le défaut de la formule (3’) est son manque de symétrie. Si
nous prenions pour l'origine des coordonnées obliques d’autres

. . be .
sommets du triangle ABC: A ou B nous aurions — sin® A ou

@ ac %
bien, T sin? B.

Les trois expressions sont égales, vu que

b ,
L siZA; sinB=,,siilc=2R'
Donc enfin | -
x y 3z
oy =2A.%=2A§%. (3")
‘ x" y" z"“

Telle est la relation entre la valeur du. déterminant des coor-
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données homogeénes des trois points et I’aire du triangle qu’ils
forment. o ‘
Passons & ’espace. o

§ 2. — Le volume d’un tétraédre en coordonnées tétraédriques.

Prenons pour le systéme des coordonnées tétraédriques
z, Y, % t, les quatre perpendiculaires abaissées d’un point M
sur les quatre plans d’un certain tétraédre fondamental. Soient
A, B, G, D les 4 sommets, «, 8, y, ¢ les‘aires des faces opposées,
on a , T
e.x+B.y+y.24+08.1=3.V,. (1)

xay7zrt , xyz'l

’ / . !
., oy, 2, ) 3V ay 1 @
” ” " e . k :
., Y, o, 0 x"y" "1
oy, 2", Z" " 2" q

Choisissons a présent un systéme des coordonnées non-homo-
génes obliquangles ayant pour plans les 3 plans du tétraedre
fondamental — alors z, parexemple est la hauteur du Iparallele-

pipede dont les arétes sont y, x, z, — de sorte que z'= z cos (z 2)
(fig. 2). e
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De méme
y=y-cos (y, y ,
x=;.cos(x, ;)
Ainsi
1 by B 7 3V0 -\ . ‘
(xy"2"t") = (x.y" .z '1)'_5— cos (x, x).cos (y, y) cos (z, z) .

Du point O comme centre décrivons une sphére de rayon 1,

soient X. Y, Z les 3 points de rencontre de cette sphére avec les
axes des coordonnées obliques; soient

9YOX =%, <9XOZ =y, <)YOZ=y.

Nous aurons un triangle sphérique, dont les hauteurs (fig. 3)

A

Fig. 3.

sont & calculer. Désignons les angles du triangle sphérique XYZ
respectivement par X, Y, Z.
Alors

sin h." = sin p..sin X = sinv.sin Y .
Soit
A+ p+v=2s.

D’apres les formules connues de la trigonométrie sphérique

X 2Vsins.sin(s—)\).sin(s———*p).sin(s—v) 2VP
sin X =

sin A . sin 1)

sin A sin .’
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De méme N
21VP 2VP
sinY=—,——2—1P—,-—, siu:=——.-——\{—.—-—.
sin A.sin v sin v sin p.
Done
: - 2VP
sin b, = cos (, z) = e
. - 2P
sin Izp = cos (y, y) = S !
- 2VP
sin o, = cos (x, x) = V
/ sin v
Ainsi
8.3.V p*2 e
L A ‘ 0, . 7 N 1 . 3
g a ey b sin)\sinp.sinv(xyz' ) (3)

Mais ce n’est pas encore la relation définitive. Il est intéressant
| d’établir le multiplicateur exact. Introduisons un systéme de
. coordonnées dont axe Of coincide avec Paxe OX, OH étant
. situé dans le plan XOY et perpendiculaire & OX, enfin OZ étant
||  perpendiculaire au plan XOY.

Nous aurons pour le tableau des 9 cosinus:

0= OH (01/
| ox | 1 0 0
x oY cos A sin A 0
’ 0z cos . cos U cos W

Les angles U et W sont & déterminer & 'aide des relations de

la forme
1

cos A

cos .

COSs &

cos A
1
cos v

cos 3

COS .
cos v

1

Cos v

cos a

cos 3

cos y
1

(4)

Pour déterminer cos W nous substituons les angles de OZ :

1 cos A cos u 0

cos’ A 1 cos v 0

COS U COS V 1 cos W gl
0 0 cos W 1.
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ce qui donne

1 cos A cos
0 = | cos A 1 cos v .

cos u cosv 1 — cos?W

ou enfin
4P — cos® W . sin? A =0,

d’ou l'on tire

sin A

cos W = —+ _\/f’_ (5)

De méme pour le calcul de cos U nous avons & substituer dans
(4) les angles de OH, ce qui donne

1 cos A cosu O
cos A 1 cos v sin A . COS v — €OS A COS u.
0 = ‘ ‘ , dou cosU = Y ,
COs . €OS v 1  cosU 7 . sin
0 sinA cosU 1 = (6)

e

Ainsi les formules de transformation deviennent

‘(—}—Ycosl—l—Zcosp-—E

4cosl—{—Y—]—Zcosv—Ecosl—}—‘qsm)\ .

_ Y — cos X 2VP
X c +Ycos~/+Z Ecosu—l—qms' cos COS'U'—}-C V .

sin A

Formons & présent le déterminant

cosz—cos)&cosp_{_c 2YP

€ ,8 cosA + 7 sind, § cos w47 sin A sin A

» AN 2 y.— cos A 2P
£, % cosk + 0 sink, £ cosy + 7 €O v ©08 COSP—}-U -—v—-

sin A sin A

(4 (/PN 14 o /4 ' (,” cos vy — COS )\ cos P' (/4 2‘/5
&, & cos k4w sink, CQ?y,U-—%—"q sin A + e sin A
" " m " m CO8 ¥ —- CO8 A cos ' " 2 VP
£, £ cosh 4 7 sml,icoszx-}—nf S + ==
Il est égal, comme il est facile & voir, a

Eon (1 '

Pt o4 21/P ' _

T U 2YP _ev 2 yF . (7)

EII ,qu :l/ 1 sin )\ .

EIII nlll ‘g”l 1
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Mais, d’autre part, ce déterminant est égal a
X 4Y cosh+Z cosp, X cosh+Y +Z cosv,X cosp+Y cosy+7Z , 1
X +Y _co‘s‘)\—}’—:-Z_7 cos ., X’ posk—{f? —|—Z’ cosv, X/ cosp’.’—l—?’ cosv~}-z7 , 1
Y"—}—Wcosi—{—i’—'cos TN ;‘-{_ﬁcos)\—}—?’—' —;—.Zjﬁcosv,r Fcosp.—l—?—'—'m@ +Z", 1

3-{’7’+Y_-’”cos)x—}—Z—'”cos My .}Z’Wcosl—l—Y’ﬁ—}——ﬁcos v, X" cos p.—}——Y—’d”cosv —I—_ZW, 1

ue 1’on transforme facilement en
q

X -X)+(Y' -Y) cos \+(Z* ~Z) cos v,
¢ -si)cq_s (Y —_Y)+(—Z—’ ~Z)cosv , (:‘Z’;—-}Z) cos p+ (? -_'Y).gqs;w(i' ~7)
(X" -X)+(Y" -Y) cos \+(Z" -Z) cos p. ,

(X" =X) cos AF(Y"' =Y)+(Z" -Z) cosv , (X" ~X) cos p+(Y"-Y) cos vt (Z" -Z)

(X7-X)+(Y"-Y) cos A+ (W’—Z) cosp. , |

-
r=

(X7-X) cos A+ (Y7=Y)+(Z""-Z) cos v , (X7-X) cos p+ (YY) cos v+ (Z7-Z)

X —X,Y Y, 7 —7% 1 cCoOsS A cos u.
= | X" =X, Y'Y, Z" —7 | > | cos\ 1. cosv |
Y'W_—i, _Y_:’-’_’—-'Y-, 72 A COS . COSV 1

X Y 7Z
X Y 7

ll

X" Y' 7" 1

X7 YT 771
Done, revenant a la formule (A) nous aurons:

. 8.3V P 6V.2V/P
QU LU _
(xy” 2" 2") S sin A sin p sinv 4P

Donge, enfin

o y & ¢ | gay,. p

= = - —.% .« [B
xu _y/r ‘Z"' t" ‘8 Sln)\ Slny. sin vy » ()

244 ’
z "ylli ZIH tll

c¢’est la- formule, que nous voulions établir.
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Il est & remarquer que le facteur

72V, P

0.sin X sin p sinv

ne dépend que du choix du tétraédre de référence; il est le méme
pour tous les quatre points choisis M, M’, M”, M'".

§ 3. — Moment de deux droites.

La plus courte distance de deux droites de 1’espace

L — b _ o N —c’
I R A e

l m n U m n

- est donnée par la formule

a" —a bV —0b ¢ —c
8 = l m n : VE(mn” — nm’)? (2)
l m’ n’
ou bien
a’—a b—0b ¢ —c
d = l m n tsin V. V2 4+ m2 + n2. Y2+ m’2+ n?
U m’ n’ (29)

ou V est ’angle de deux droites. L’expression devient plus simple:
st I, m, n, I',) m', n’ désignent les cosinus des angles, alors
2+ m24 n2=1 =124 m'?+ n'2 Nous avons

a —a U —b ¢ —c¢

6.sinV = l m n x (3)
U m’ n’

Le produit ¢ .sin V est ce qu'on appelle le moment de deux
droites (1) et (1'). Le déterminant a droite égalé & zéro exprime
que les deux droites se coupent. On peut donc dire que les deux
droites de l'espace se coupent si leur moment s’annule, —en d’autres
mots, si leur plus courte distance est nulle, ou bien si elles font
un angle nul, c¢’est-a-dire si elles sont paralléles.

Dans les deux cas le volume d’un tétraedre quel’on congoit en
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prenant une paire de points sur chacune des deux droites,
doit étre nul; il est donc naturel de chercher relation entre le
moment et le volume de ce tétraedre.

Sil'on a déja établi 'expression (1) de la plus courte distance
il est facile de trouver cette relation. En effet, si 'on prend un
point (x, ¥, z) sur la droite (1) et un autre (', ', z’)sur(1’), on a

P ’
xl_—a l/___ xl—_:a‘

- VW—— a)? T I/E(x: — az')2

Le déterminant au numérateur est égal a six fois le volume
du tétraédre (x,, a, a’, x}), et les racines carrées au dénominateur
représentent les longueurs des arétes opposées, c’est-a-dire

6V

60.sinV = id.d' . (%)

Cette relation se simplifie si I’on prend les points x,, x; de ma-
niere que d et d’ soient égales & I'unité de longueur. Elle exprime
le théoreme connu de géométrie du tétraedre: st l'on prend sur
deux droites gauches deux longueurs finies, le volume du tétraédre
ainst obtenu ne varie pas st Uon fait glisser ces longueurs le long
des droites respectives sans changer leur valeur.

Cette relation entre le moment de deux droites et le volume a
déja été donné par Cayley. Il établit la formule (4) de deux ma-
niéres différentes. |

10 La section du tétraedre par le plan parallele aux deux
arétes opposées a la distance de z et & — z des deux extrémités
de la plus courte distance ¢ a pour aire

dd’(d :_ZL

52 sinV .

En intégrant entre les limites 0 et ¢, on obtientle volume du
tetraedre

5

"® — 1

V = fMB“’ Z)zsinV.dz = -é-dd’B sinV
0

La 2me méthode est encore plus élémentaire. En ce point le

texte de Gayley contient une faute de rédaction, il dit: par une



1
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des arétes qui ne se coupent pas menons un plan.perpendiculaire
a Uaréte opposée (ce qui est en général impossible et veut dire:
perpendiculaire & la plus courte distance des deux arétes). Le
tétraédre est décomposé en deux tétraédres ayant pour base
commune un triangle; le volume entier est égal a la somme (ou
différence) des volumes de ces deux tétraedres.

V=—§-b‘.(k1ih2), hxih?!:d’SinV& et S_—a—é

ce qui ramene a la formule (4).

En résumé, a ’aide des développements du § 2 nous pouvons
dire, qu’en coordonnées homogénes tétraédriques le moment de deux
droites s’exprime — jusqu’a un multiplicateur dépendant seulement
du choix du systéme de coordonnées — par le déterminant composé
des coordonnées des deux paires de points pris sur les deux droites.
Cette remarque va étre mise & profit dans la suite.

§ 4. — Expression du moment de deux droites
en coordonnées de la droite.

Prenons les coordonnées homogenes de la droite piy, liées par
la relation |

P = (p, p) = P1sPss + Pr1aPsp + PraPss = 0 - (1)

La condition pour que deux droites p et p’ se coupent est

alors '
: oP ’ ' '
, 4 = 2 —— . = O . 2)
(P, P’) Sy ik (

Ce n’est autre chose, & un facteur prés, que le volume du
tétraédre formé par deux segments de longueur 1 pris sur 'une
et I’autre droite. En effet, si x, y sont deux points de la premieére
droite, on a

Py = TiYr — T Y;

a un facteur prés; si £, » sont deux points de la seconde,

’

Py = Eink - Ekni H
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ainsi done
Ty Xy Xy Xy
R T Yy Ye Yz Ys
,' 7} = 2 .'13' ) E il ) = . ’ 3
(p, P (2, ¥a) (B3 14 3 E, Es 54

M, My Mz My
et d’apres § 2 | |

~ = 6.V,
donc d’apres § 3 '
= 1.8.sinV .
Ainsi
3.sinV.=Y.(p, p) - A (3)
DEUXIEME PARTIE: APPLICATIONS.
§ 5. — Applications & la théorie des connexes ternaires.

1. — Soient (z, u), (y, ¢) deux éléments (point, droite) du
plan connexe, et soient a la droite (zy), A le point (uv¢). Les
coordonnées de A sont proportionelles aux mineurs de la matrice

W, U ugj

¢

1 Y2 Y3

Donc P'aire du triangle Azy, & un facteur pres dépendant du
choix du systeme des coordonnées, est représentée par la formule

Z, Ly Zy
Y, Yy Ys | = D(wv) (m2) = uyv, — v u
(g v3)  (ug9;) (u; )
donnée dans mon mémoire cité plus haut.
Mais nous pourrions considérer un autre triangle, notamment
celul formé par les droites u, ¢, a = (xy). D’aprés une formule

connue (G. SALMON, Sections conigues, n® 39, p. 53) son aire a
pour expression §

| (zy); (zy)y (xy)s
(uey vg) (vy (@y)o) - ((y), ug)
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ou bien, calculs faits:
(u, vy — V)2

(ul Vo — Uy Vl) (xs Yy — Ys Vx) (“x Ys — 4, xs) ’

formule qui n’est pas symétrique. o
Cherchons une autre formule plus symétrique. Soient z, y les
points d’intersection de la droite (z, y) = a avec les droites u et ¢;

de sorte que u; = 0, ¢z = 0. On peut alors poser

z = dz + py, y = Nz + p'y ,
avec
).ux—}—guy = 0, )\’vx—l-—p.'vy = 0 .

Pour fixer les valeurs absolues de 2, u, 1’, ' ajoutons les rela-
tions

7 4 /
A+ u =1, V4w =1,
Alors
—_u u
A__—___.__y’ P’=_——x—’
Uy — U, Uy — Uy
= y
' Yy ’r X
)‘=v'—v’ B =Ty
P Y z y

L’aire double du triangle Az, y (= uva) est donc, & un facteur
constant pres,

;(uv)1 (wv)y  (uv), (uv), (wv)y (uv),

— — — . , ,
Zy Zg Ls = ()‘P‘ - }*)‘) Zy Ly X3

< 1 Ye Ys Y, Yo Ly

ou bien

(e, — uy) (v — vy) |

La méme formule peut étre établie en calculant directement
les coordonnées des points z, y par les équations

ug, = u,x, + ugxy + gz, = 0, (xzyy,) = 0,

ce qui donne

Z4 Xy Z3
T U, — YUy, Tyt — Yy Uy Ty Uy — YUy
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De méme les équations ¢y = 0, (y2,y5) = 0 donnent:

Yy — Yo . Ys

TiVy — YVe TeVy T Y2z Xy Vy = Ys¥g

Enfin, les coordonnées du point A sont proportionnelles a
(g v3) (g v;) (g 95) -

Done, aire double du triangle Azy, & un facteur prés, est
égal au déterminant

iUy — YUy Toly —YgUy Zglly — Ygliy %y Zo X3
xl "y - yl vx .’132 vy - y2 Vx x:-} vy - y3 vx = (u.z: vy - “y vx) yl y2 y3
Ug Vg — UgVy UV — UV Uy Yy — Uy ¥,y (tgvg) (ugwy) (1yvy)

= (uxvy — uyvx)2 ;

Reste & déterminer le facteur de proportionnalité (dans le cas
du systeme considéré au § 1).
D’aprés (1) pour le premier point:
27, = Xe;V; = H(v, Xayz; — v, Tay)
1

lty = ll,x

= 2A0(uy—ux)H‘.'. H =

De méme pour le second point nous trouvons

1
H = ———,

et nous arrivons de nouveau a la formule

(u,, vy, — i, Vx)z

(uy —_— uT) (vy — vx)

2. — Soit a présent (y, ¢) I'élément du connexe conjugué
qui correspond a 1’élémeént (x, u). Alors
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Pour de telles paires d’éléments les deux triangles, dont nous
avons parlé au n° 1 coincident, et les deux expressions de I'aire
sont identiques.

Le triangle se raméne a un point (une droite) dans deux cas:
10 u passe non seulement par y, mais aussi par x.

Donc: le moment de deux éléments correspondants d’un connexe
ternaire et de son conjugné s’annule st U'un ou U'autre appartient
a la coincidence principale correspondante.

REMARQUE. — Dans le cas général de deux éléments (z, &),
(y, ¢) quelconques leur moment s’annule dans les trois cas:

10 Les points x et y coincident;
20 Les droites u et ¢ coincident;
3° Le point A est sur la droite a.
3. — Connezxe bilinéaire (collinéation):
= a,u, = Zayo0,u, = 0. (1)
Les éléments c(')rresponydants
oy, = aya; ,  ov; = au, (i =1, 2, 3) (2)
forment le connexe conjugué
(aby) (2fn) = 0.
Si lon calcule le dernier, on obtient (changeant y, ¢ en z, u)
?ogle, v) = w, (2 — 1) — 2f 4 2f, .

De (2) on déduit

b = “x”gba_ = f,(x, u),
vy = Zaixiua = u a, = fle, u) ,
u, = ay Yo u, = a,u, = f(x, u) .
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Done

T — w, fi(z, w) — 2z, u) .

Ainsi les éléments du connexe bilinéaire pour lesquels le
moment (au sens du n® 2) est nul appartiennent au connexe iden-
tique ou & f;(z, u) = 0, — ce n’est qu’un cas particulier de ce
qui a été dit au n° 2 pour le connexe général.

Enfin, si I’élément (z, u) n’appartient pas au connexe (1), le
moment de (z, u) et de son transformé par (1) est nul, s’il appar-
tient au connexe (2, 2)

u,fy(z u) — Pz, u) = 0

dans lequel & chaque droite u correspond une courbe de 2®€ordre
ayant double contact avec la conique dégénérée — paire de
droites u et u” et pour corde de contact la droite u’, si 'on
désigne les transformées collinéaires successives de u en collinéa-
tion (1) par u’, u”, ...

Réciproquement, au point donné z appartient une courbe de
ome clagse passant par les points x, 2" et dont les tangentes corres-

pondantes se coupent en x’.

§ 6. — Le moment dans la théorie des connexes avec
élément (point, plan).

Comme j’ai indiqué au commencement, la notion du moment
de deux droites trouve son application danslathéorie des connexes
quaternaires ayant pour I’élément la combinaison (point, plan).
Si Uon prend deux éléments pareils (z, u), (y, ¢), leurs points x, y
déterminent une droite p = (xy), et leurs plans u, ¢ une autre
p’ = (uv¢). On peut donc déterminer le moment de ces droites,
et c’est ce que je nomme le moment de deux éléments du connexe
(z, u).

Son expression analytique s’exprime par la formule
Ly Xy Xy Iy
Yo Y2 Ys Y

, p ' ' Yz — xoy) (w, v, — v, i=1,2,3,4 ,
p. p, P D (% vy, R Y (w5 9y, kY )

Il

4 ’ ’ 14

p, P, P, P,

L’Enseignement mathém., 27¢ année s 1928.
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car p/, = my, = (uyv,) et ainsi de suite.
Done, a un facteur pres, nous avons

M) = v
] yv) = <"ixi"hyh—"kxkuiyi_Vixi”kyk‘l‘“kxk"iyi)

I

2 (u, vy, — U, Vo) -

Prcnons un élément (x, u) quelconque et son correspondant
dans le connexe conjugué (y, ¢). Nous aurons pour le moment de
ses deux éléments

() = 2 (2L e ).

(y, v ca dou; dx;
parce que
of of
R A e
1 kR
done
of .
oo, = Su.—— = n.flx, u),
oy = Sugl =gl
} of ,
G B, = DT = m.f(x, u)
& k ’
bxk
Si I’élément (z, u) appartient au connexe f(x, u) = 0, son

moment par rapport a I’élément correspondant du connexe

conjugué devient
: of  of
.M <xu) == zlx.E—[. 2 .

Yy 0 u; bxi

-

Ainsi, st [’élément (x, u) appartient a la coincidence principale
du connexe donné
(flex, u) =0, u, = 0)

ou son correspondant (y, V) appartient & la coincidence principale
du connexe conjugué, le moment de ces deux éléments est nul.

La réciproque est vraie: si le moment d’un élément du connexe
donné et de son correspondant au connexe conjugué est nul, 'un ou
Pautre appartiennent @ la coincidence principale correspondante.

Nous pouvons dire encore: Si pour chaque élément du connexe
donné f.(x, u) = 0 nous avons

g of ™ _
bxl ou

’
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ou si 'on a 1dentiquement

pY of —bizk.f(x, u)

bx bui

le moment de chaque élément et de son conjugué au connexe
f (zu) = 0 est nul. Dans ce cas le connexe conjugué du (1) est le
connexe identique .

§ 7. — Moment de deux droites dans la théorie des connexes aux
éléments (point, droite) dans le Rg.

1. — Considérons un connexe lineo-linaire défini par I’équation
Za; %Py =0 (1)

que 'on peut écrire aussi

1 1

ou symboliquement

a, (aapp) = aa

De ’ensemble des oo? éléments (point, droite) de 1’espace,
I’équation (1) détache oof éléments, que ’on peut caractériser
de cette maniére: & chaque point X correspondent (c’est-a-dire
forment avec X I’élément de la configuration) 3% droites du
complexe linéaire

P(z) = 205 py; = 0 ; (2)

parmi ces complexes il y a o? complexes spéciaux, qui corres-
pondent aux points d’une surface du 2me ordre

(I)(l) (I)(l) s (I)(l) (1) (I)(l) ‘D(l) = ] E.ax a; (ab a/b/) ) (3)

A chaque point de cette surface correspond une droite, avec

1 Ceci donne I’idée de considérer les connexes qui sont des transformations rationnelles
du connexe identique: si nous avons un connexe quaternaire

Spoep(x, wdp(x, u)y = 0 (R=1..4)

oll o7 — du degré k en x et du h en u, et ¢, — du degré m — k en x, n — h en u, a I'aide
de la transformation ¢uj = ¢4 (x, u), v = 4z (x, u), nous le transformons en vy = 0.
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les coordonnées ®f;, 'axe du complexe linéaire spécial (2).

Donc chaque complexe P, sera spécial si I’équation (3) s’annule
identiquement, ce qui a lieu quand les coefficients a;, »; remplissent
10 relations

Wi 120p 34 T @ 340 13 T @ 130 49 T @ 420 13 7
T @ 4y 93 + @5 938y 4y, = 0 ((, k =1,2, 3,4
ce qui s’écrit symboliquement
! 14 .
(ahai —{’— akal) (ab a’b,) = O .

La surface (3) peut présenter les divers cas de dégénérescence
sur lesquels nous n’insistons pas davantage pour le moment.

2. — Avec le point x forment I’élément de la configuration
toutes les droites de ’espace, dont les coordonnées x; remplissent
les conditions

) =0 (k,j = 1,2, 3, 4)

au nombpre de 6. En éliminant z, ... x, on voit que doivent étre
nuls les déterminants du tableau

Ay 92 @13 Ay ap @y 93 Qe @y 3y
g 92 @313 Ay 15 Qa3 Ay 94 Oy 34
=0 (4)
@3 12 Q313 Q314 Q393 Q394 Q334 ’
|

Ay 12 P13 Yug R4 03 Qg o9y Gy g4 |

ce qui donne en somme 15 relations, dont 3 seulement indépen-
dantes. Si les conditions sont toutes remplies, les mineurs du
3me grdre n’étant pas tous nuls, on regoit un systéeme défini
des valeurs «,x,xs%,, qui déterminent un point fondamental
du connexe linéo-linéaire (1): par exemple, pour le connexe

Ty Prz T T3 P1s + ByPry = 0 (“)

le tableau (4) prend la forme

0.0 0
10 0
1 0
0 1

S O o ©
S O o O

o o o ©

S O =
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Tous les mineurs s’annulent identiquement, et parmi les
déterminants du 3me ordre il y en a un qui n’est pas zéro:

Ay 12 @213 Qg q4 10 v

g

a3 19 G343 A3, | =0 1 0 =130

Ag 12 Q13 Y 14

Le point z, = 0 = z, = x, est le point fondamental, ce que I'on
voit d’ailleurs directement de (a).

3. — Prenons a présent quelque droite déterminée. Dans le
connexe (1) lui correspond le plan

en général bien déterminé, — seuls les points de ce plan forment
des éléments du connexe (1) avec la droite choisie.

Mais il existe des droites qui forment I’6lément du (1) avec
chaque point de ’espace, qu’on peut appeler les droites fondamen-
tales ; elles sont définies par des équations

o =0, (i =1, 2, 3, 4) (6)

ce sont donc des droites communes & quatre complexes linéaires
(6), elles sont donc au nombre de deuzx. En effet si le déterminant
A est différent de zéro

@16 Ay as 3y G a3

AL o156 P26 P35 @y o3
314 4394 Q334 Q3 93

a a

4,14 4.3¢ %4 93

on peut résoudre (6) par rapport & py,, Pa, Psss Pas (0u pour
quelques autres quatre pp; dont le déterminant correspondant
de la matrice (4) est différent de zéro), et on peut écrire

Apik = [)ihp12'+ C;hPig » (t, # =1, 2, 3, %) (8)

by = Cig = A, by = ¢p = 0.
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Si I'on substitue ces valeurs dans I’équation

P12 Pas + P1aPas + PraPsy = 0,
on a l’équation du 2me degré

Apfz + Bpppis + Cpf:’. =0 (9)
ou l'on a
A = A.by + b,0by, ,
B = A.by + Abgy + byycoy + by (10)
C = A.cy + €4€, -

Les droites fondamentales sont donc réelles et distinctes si

B2 — 4AC > 0 ,
imaginaires, si
B2 — 4AC < 0 ,
elles coincident, si
B2 — 4AC = 0 . (11)

Dans le premier cas on pourrait supposer, qu’il peut arriver
que les deux droites fondamentales se rencontrent. Mais 1l n’est
pas difficile de montrer, que si les droites fondamentales ont un
point commaun, elles ont tous leurs points en commun, cest-a-dire
elles coincident, la condition d’intersection étant aussi (11):

B? — 4AC = 0 .

On peut le démontrer par le calcul de la maniére suivante.
Soient p et p’ deux droites fondamentales de (1). Alors les rap-

-

" D, P12 . , . , .
ports des coordonnées 22 et — doivent vérifier 1’équation (9).

Pia P13
Donce
;)12 P12 B P12 P12 C
= + =F == T X ’ _ = K
Pis P13 P13 - P13
ou bien,
I—)12 * 512 1_7.12 * l—’is + ;13 * ;;2 ;)13 * 1-713
C —B A (k== 0)

Mais ~
A.py = bypy + €4Pis

A'];;‘L = 1’14;;2 + 0141-713
d’apres (8).
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Substituons ces valeurs en
A*(p, p') -
Nous aurons apres quelques calculs

A (p, P) = h(4AC — BY (12)

ce qui prouve le théoréme énoncé et montre en méme temps la
relation qui existe entre 1’expression 4AC — B2 et le moment de
~ deux droites fondamentales du connexe (1).

Ainsi & chaque connexe linéo-linéaire (1) appartient une cer-
taine caractéristique, indépendante du choix des coordonnées,
qui détermine la position réciproque des deux droites fondamen-
tales du connexe, c¢’est le moment des deux droites fondamentales.

SUR LA CONVERGENCE DES SUITES DE FONCTIONS
QUASI-ANALYTIQUES

PAR

Georges VALIRON (Strasbourg).

Je me propose d’étendre dans cette note les théorémes relatifs
aux fonctions holomorphes bornées dans leur ensemble dans un
domaine aux fonctions quasi-analytiques satisfaisant & certaines
conditions.

1. — La famille des fonctions f(x), dérivables et de dérivée
uniformément bornée sur un segment a <z < b, (|f'(x)| <M
quelle que soit la fonction et quel que soit z sur (a,b)), est une
famille de fonctions également continues. Il §’ensuit que, si une
sutte de fonctions f(x; n) de la famille converge sur un ensemble E
de points denses sur le segment (a,b), ceite suite converge uniformé-
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