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SUR LE MOMENT DE DEUX DROITES
ET SON APPLICATION DANS LA THÉORIE

DES CONNEXES

PAR

D. Sintsof (Kharkof).

C'est à Cayley que nous sommes redevables de l'introduction
du moment de deux droites. Dans mon mémoire « Théorie des

connexes dans l'espace » (Annales de V Université de Kasan, 1895)

j'ai appliqué cette notion aux deux droites que l'on obtient si
l'on prend deux éléments (point, plan), — l'une qui joint les

points, l'autre qui est l'intersection des deux plans, et c'est à

cette expression que j'ai donnée le nom de moment de deux
éléments du connexe.

Mais l'expression analytique que l'on établit existe aussi

pour le connexe ternaire, et j'ai donné (loc. cit., Ch. IV, remarque)
son interprétation géométrique.

Mais pour les applications il est important de montrer quels
sont les multiplicateurs numériques que l'on introduit, si l'on
prend un système particulier de coordonnées homogènes.

C'est par ce problème élémentaire que je commence. Il ne me

paraît pas dépourvu d'intérêt. Puis je donne des applications à

la théorie des connexes.

Première Partie.
§ 1. — Uaire du triangle en coordonnées homogènes

(triangulaires).

Ferrers (Trilinear coordinates) donne l'expression pour la
distance de deux points en coordonnées homogènes. Il n'est pas
sans intérêt de donner l'expression correspondante de l'aire
d'un triangle.
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Prenons pour coordonnées homogènes x, y, 2 d'un point M
les perpendiculaires MQ, MP, MR abaissées de M sur les côtés
du triangle fondamental ABC (fig. 1) ayant au sommet G l'angle
w; les longueurs des côtés opposés aux sommets A, B, G étant
a, è, c, on a

ax + by -|- cz — 2 A ABC 2A0 (B

Soient les coordonnées (non-homogènes) du même point M par
rapport aux axes GA, GB, x, y. Alors

x x sin to

y — y sin to
(2)

Donc, si l'on prend trois points M, M', M"

X y z

x' y' z'

X" y" z»

ou, d'après (2)

x y
2A0- ax — >>y

c X y î

x' y' 2A0- ax' -by' O
<1

1 x' y' îc c

x"y" 2A0 ax" - by" x" y", î
c

2Ao
C

x y 1

x' y' 1

x" y" 1
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Mais si l'on fait tourner l'axe des y (CB) de l'angle ~ —

les coordonnées nouvelles £, n s'expriment à l'aide de x, y:

y X — — Y) COtg 03

Donc

x y 1
1

x' y' 1 —;
sin 03

2A

— COtg 03 *1 1
\ i i.

?' — V COtg 03 V 1
sin 03

?' V 1

?" - V COtg 03 V 1 ç" v 1

ce qui est égal à
^? A étant l'aire du triangle MM'M".

Donc, dans le système des coordonnées homogènes, que nous

avons choisi, on a

x y z

x' y' z'

x", y

2A0 2 A

c sin to
2A A (3)

puisque 2A0 c.hCt hc étant la hauteur correspondant à la base

AB du triangle ABC. On pourrait encore poser 2A0 ab sin «.
Alors

'

x y z

x' y z'

x" y" z"

ab
— sin" 03 .A (3')

Le défaut de la formule (3') est son manque de symétrie. Si
nous prenions pour l'origine des coordonnées obliques d'autres

b c
sommets du triangle ABC: A ou B nous aurions — sin2 A ou

bien sin2 B-
b

Les trois expressions sont égales, vu que

a b

sin A sin B
2R

Donc enfin
x y z

x' y' z'

x" y" z"

2A A 2A~R 4R2 (3")

Telle est la relation entre la valeur du déterminant des coor-
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données homogènes des trois points et l'aire du triangle qu'ils
forment.

Passons à l'espace.

§ 2. — Le volume (Lun tétraèdre en coordonnées tétraédriques.

Prenons pour le, système des coordonnées tétraédriques
x, y, <f, les quatre perpendiculaires abaissées d'un point M
sur les quatre plans d'un certain tétraèdre fondamental. Soient
A, B, C, D les 4 sommets, «, /3, y, ô lesMaires des faces opposées,
on a ;

a.aj+ß.y + T,.* + 8.f=.3.V0 (1)

Le déterminant

X y »
JS t X y z 1

x' y' ' z' t'
Ol

>CO

111
x' y' * i

z" f x". y" z" l
x'\ ym, zm t'" xm y'" zm 1

| Choisissons à présent un système des coordonnées non-homo-
I gènes obliquangles ayant pour plans les 3 plans du tétraèdre

fondamental — alors s, parexemple, est la hauteur du (parallélépipède

dont les arêtes sont y, x, z, — de sorte que z:== z cos (z, z)
(%• 2).
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De même

y y cos (y y)

x x cos (x, x)

Ainsi

_ oy _ _ _
(xyf z" t"f) — (x .y'. z" 1) cos (x, #) cos (?/ y) cos (z z)

Du point 0 comme centre décrivons une sphère de rayon 1,
soient X. Y, Z les 3 points de rencontre de cette sphère avec les

axes des coordonnées obliques ; soient

<) yox x <3 xoz p. <) yoz v

Nous aurons un triangle sphérique, dont les hauteurs (fig. 3)

Ä> f — (z ' z) > \ j — (y> 2/) Äv f — (* » z)

Z

Fig. 3.

sont à calculer. Désignons les angles du triangle sphérique XYZ
respectivement par X, Y, Z.

Alors
sin h. sin p. sin X sin v sin Y

Soit
X + {jl + v 2s

D'après les formules connues de la trigonométrie sphérique

Vsin s sin (s — X) sin (s — p.) sin (s — v) 2 yP
Sill X — 2 —————— - ; ~ — ; r ;

s m h sin p. sin a sm p.
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De même
2 yp" 2 yF

Donc

sin Y _sin X sm v sm v sin u.

•A / -\ >À^P
sin E — cos (z z)

sin cos (y, y)

sin h cos (x x)

sin X

2 yp
sin [jl

2VP
sin v

Ainsi
Q Q V P3/2

(xy'z''t"f) ' °- •

: ixy'z", \) (3)
8 sm X sin jjl sin v

Mais ce n'est pas encore la relation définitive. Il est intéressant
d'établir le multiplicateur exact. Introduisons un système de

coordonnées dont l'axe 0£ coïncide avec l'axe OX, OH étant
situé dans le plan XOY et perpendiculaire à OX, enfin OZ étant
perpendiculaire au plan XOY.

Nous aurons pour le tableau des 9 cosinus:

os OH OZ

ÖX 1 0 0

ÖY cos X sin X 0

OZ COS (JL cos U cos W

Les angles U et W sont à déterminer à l'aide des relations de
la forme

1 cos X cos p. cos a

COS X 1 COS V CO& ß

COS [JL COS V 1 COS Y

cos a cos ß cos y 1

0 (4)

Pour déterminer cos W nous substituons les angles de OZ :

1 cos X COS UL 0

cos X 1 cos v 0

cos p. COS V 1 cos W
0 0 cos W 1

0
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ce qui donne

ou enfin

d'où l'on tire

D. SINTSOF

I 1 cos X COS (J.

0 cos X 1 cos v

COS JJL cos v 1 — cos2W

4P _ cos2 W sin2 X 0

VP
cos W L v (5)

sin X

De même pour le calcul de cos U nous avons à substituer dans

(4) les angles de OH, .ce qui donne

1 COS X COS (J. 0

cos X 1 cos y sin X

cos p. cos v 1 cos U

0 sin X cos U 1 - (6)

0 d'0Ù COS U =r
cos v — cos X cos p.

sin X

Ainsi les formules de transformation deviennent

X -]~ Y cos X -j- Z cos fji Ç

X cos X —J— Y —j- Z cos v cos X -j- r\ sin X

- - _ cos v — cos ^ cos jj. 2 VP
X cos u. 4- Y cos v -j- Z ç cos u. 4- r. :— :— -f- 4 —r—r-k k sin X sin X

Formons à présent le déterminant

cos X + rj sin X cos a. -j- r\

?' ?' cos X -f- V sin X ?' cos -f- i\'

?" ?" cos X -j- ff sin X ?" cos jj. -j- r"

?'" ?'" COS X + y/" sin X r cos p. + v/"

Il est égal, comme il est facile à voir, à
'

S *! Ç 1

?' V V 1

?" rf r 1

?"' V" ç» 1

cos v — cos X cos V- + K
2 yp

sin X sin X

COS v — cos X cos H-

+ V
2 yp

sin X sin X

COS v — cos X cos t* + V
2 yp

sin X sin X

COS v — cos X cos u.
_1_ V" 2yp

sin X r sin X

x Sin X x 6V. 2 VP • (7)
sin X v
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Mais, d'autre part, ce déterminant est égal à

X -f- Y cos X -j- Z cos p., X cos X -j- Y -j- Z cos v X cos p. -j- Y cos v + Z ,1
X7 -j- cos ^ Z' cos H* » cos ^ + Y' + Z' cos v X' cos p. -J- Y' cos y -f- Zf 1

X"+Y77cosX + Z77cosp„ X" cos X + Y" + Z77 cos v X77 cos p. + Y^cos v + Z77, 1

SF+Y^cosX + Z^cosp., X^cosX+Y^ + Z^cos v, ^cos p. + Y"'cos v + Z\ 1

que l'on transforme facilement en

(X7 -X) + (Y' -Y) cos X+(Z^ -Z) cos p.

(X7 -X) cos X+fY7 ~Y)+(Z' -Z) cos v (X7 -X) cos p.+ (Y7 -YJcosv+fZ7 -Z)

(X77 -X) + (Y77 -Y) cos X+^Z77 -Z) cos p.

(X77 -X) cos X+(Y77 -Y)+ (Z77 - Z) cos v (X77 -X) cos p.+ (Y77 - Y) cos v + (Z77 - Z)

(X777-X) + (Y777-Y) cos X+ (Z777-Z) cos p.

(X777-X) cos X+(Y777-Y) + (Z7"-Z) cos v (Y777-!) cos p.+ (Y77'-Y) cos v + (Z777-Z)

X' — X, Y' — Y, Z' — Z

X77 -X, Y77 — Y, Z77 — Z

X777 —X, Y777 Y Z777 -—Z

X

1 cos X cos p.

cos X 1 cos v

cos p. COS V 1

tp

X Y Z 1

X7 Y7 Z7 1

X77 Y77 Z77 1

7^777 —, 2"' 1

Donc, revenant à la formule (A) nous aurons:

'»3V„ Ps/a 6V. 2 \/p

(8)

(xy' z" z'") '

Donc, enfin

a; y z t

x' y' z' V

x" y" z" l»

x'". y'" z'" V"

' sin X sin p. sin v 4P

72Yq.

sin X sin p. sin v
.Y (9)

c'est la formule, que nous voulions établir.
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Il est à remarquer que le facteur

72V0P
8 sin X sin [j. sin v

ne dépend que du choix du tétraèdre de référence; il est le même

pour tous les quatre points choisis M, M', M", M"'.

§ 3. — Moment de deux droites.

La plus courte distance de deux droites de l'espace

x — a y — b z — c x — a' y — (/ z — c'
ï ni n

' ^ 61
V °° (O

est donnée par la formule

a' — a 1/ — b c' — c

8 / m n

V m n'

ou bien

a' — a b ' _ b c' — c

8 l m n : sin V

V mf n'

: ySK — nm'Y (2)

(2')

où V est l'angle de deux droites. L'expression devient plus simple
si Z, m, n, V, m\ n' désignent les cosinus des angles, alors
l2 + m2 + n2 1 V2 + m'2 + n'2. Nous avons

>. sin Y

a' — a b'

l

V

— b c' — c

m n

mr n'

(3)

Le produit d sin V est ce qu'on appelle le moment de deux
droites (1) et (1'). Le déterminant à droite égalé à zéro exprime
que les deux droites se coupent. On peut donc dire que les deux
droites de Vespace se coupent si leur moment s'annule, —en d'autres
mots, si leur plus courte distance est nulle, ou bien si elles font
un angle nul, c'est -à-dire si elles sont parallèles.

Dans les deux cas le volume d'un tétraèdre que l'on conçoit en
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prenant une paire de points sur chacune des deux droites,
doit être nul; il est donc naturel de chercher relation entre le

moment et le volume de ce tétraèdre.
Si l'on a déjà établi l'expression (1) de la plus courte distance

il est facile de trouver cette relation. En effet, si l'on prend un
point (x, ?/, z) sur la droite (1) et un autre (x\ y z') sur (!'), on a

vsfo -«) ' '
j/s(*;-«')»

Le déterminant au numérateur est égal à six fois le volume
du tétraèdre (xv a, ax[), et les racines carrées au dénominateur
représentent les longueurs des arêtes opposées, c'est-à-dire

s-sinV ±Ä- (4)

Cette relation se simplifie si l'on prend les points xl7 x[ de
manière que d et d'soient égales à l'unité de longueur. Elle exprime
le théorème connu de géométrie du tétraèdre: si Von -prend sur
deux droites gauches deux longueurs finies, le volume du tétraèdre
ainsi obtenu ne varie pas si Von fait glisser ces longueurs le long
des droites respectives sans changer leur valeur.

Cette relation entre le moment de deux droites et le volume a

déjà été donné par Cayley. Il établit la formule (4) de deux
manières différentes.

1° La section du tétraèdre par le plan parallèle aux deux
arêtes opposées à la distance de z et $ — % des deux extrémités
de la plus courte distance o a pour aire

dd'(§ — z) z ^smV

Eu intégrant entre les limites 0 et S, on obtient le volume du
tétraèdre

V f—(S~ *)2 sin V 1 dd'8sin V
0

La 2me méthode est encore plus élémentaire. En ce point le
texte de Cayley contient une faute de rédaction, il dit : par une
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des arêtes qui ne se coupent pas menons un plan perpendiculaire
à Varête opposée (ce qui est en général impossible et veut dire:
perpendiculaire à la plus courte distance des deux arêtes). Le
tétraèdre est décomposé en deux tétraèdres ayant pour base

commune un triangle; le volume entier est égal à la somme (ou
différence) des volumes de ces deux tétraèdres.

V i S (Ä, ± A2) ht ± h2sin V et S ^
ce qui ramène à la formule (4).

En résumé, à l'aide des développements du § 2 nous pouvons
dire, qu''en coordonnées homogènes tétraèdriques le moment de deux
droites s'exprime — jusqu'à un multiplicateur dépendant seulement

du choix du système de coordonnées — par le déterminant composé
des coordonnées des deux paires de points pris sur les deux droites.
Cette remarque va être mise à profit dans la suite.

§ 4. — Expression du moment de deux droites

en coordonnées de la droite.

Prenons les coordonnées homogènes de la droite piX, liées par
la relation

P (p, p) p12p34 + p13p42 + p14p23 0 (1)

La condition pour que deux droites p et p' se coupent est

alors

(p. p') o • <2>

Ce n'est autre chose, à un facteur près, que le volume du
tétraèdre formé par deux segments de longueur 1 pris sur l'une
et l'autre droite. En effet, si #, y sont deux points de la première
droite, on a

Pik ~ xiVk xkVi '

à un facteur près; si |, ri sont deux points de la seconde,

p'ik ^k — £*V;
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ainsi donc

(P'Y) s (xi V2) (?3 r4)

61

Si x2 ^3 *4

2/1 2/2 2/3 2/4

?1 ?2 ?3 ?4

ri V r3

et d'après § 2

donc d'après § 3

Ainsi

6A.Y

\ § sin Y

8 sin Y Y. (p p') (3)

Deuxième Partie: Applications.

§ 5. — Applications à la théorie des connexes ternaires.

1. — Soient (x, u), (y, v) deux éléments (point, droite) du

plan connexe, et soient a la droite (xy), A le point (uv). Les
coordonnées de A sont proportionelles aux mineurs de la matrice

a. u9 ms

Donc l'aire du triangle Axy, à un facteur près dépendant du
choix du système des coordonnées, est représentée par la formule

2/1 2/2 2/3

K "3) (U8 "l) K v2)

^(aiVk)(xixk) uxvy — Vxuy

donnée dans mon mémoire cité plus haut.
Mais nous pourrions considérer un autre triangle, notamment

celui formé par les droites u, p, a (xy). D'après une formule
connue (G. Salmon, Sections coniques, n° 39, p. 53) son aire a

pour expression

(xy), (xy)2 (xy)3

(ut fa) (xy)2) ((xy), u2) '
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ou bien, calculs faits:

("l ^2 ~ U2 Vl) (XZ Vy — Vz Vx) (UxVz — UyXz)
'

formule qui n'est pas symétrique.
Cherchons une autre formule plus symétrique. Soient x, y les

points d'intersection de la droite (x, y) a avec les droites u et e;
de sorte que wx 0, 0. On peut alors poser

avec
x X# + \^y y — Xx + [i/y

M + V-Uy
0 ' + M 0

Pour fixer les valeurs absolues de X, jx, X', /ut' ajoutons les

relations

X + u 1 X' + ji' 1

Alors

H-

X'

L'aire double du triangle Ax, y uva) est donc, à un facteur
constant près,

Ml Ma ("Os

x1 x2 x?>

Vi V2 Vz

(X ul' — ti-xq

('»'). («l')s ('"')»

#2 .t3

2/i V2 xz

ou bien
("aAy — "y^)2

("x — "y) ("* — "y)

La même formule peut être établie en calculant directement
les coordonnées des points x, y par les équations

U-X Ulx1 + u2x2 + uz x3 o (xx2y3) 0

ce qui donne

«i 11
y — fl Ux X2 11

y — y2 11x X3 "y ~ «a:
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De même les équations vy 0, {yx2y3) 0 donnent:

Vi S/s

X1 vy — UDx V ~~ y2"x x* vy ~~ 2/3

Enfin, les coordonnées du point A sont proportionnelles à

(u2vs) (ms^i) > K^s) •

Donc, l'aire double du triangle Axy, à un facteur près, est

égal au déterminant

XlUy — yiUX X2Uy—y2Ux *8 Sfc "a

X1 "y — Vi VX X2Vy — V2 Wy ~ S/s ^
*V1

(uxvy — uyvx)

X* X» Xo

yi y2 2/3

(Va) K"i) (Va)

Kvy - uyvx)2 •

Reste à déterminer le facteur de proportionnalité (dans le cas
du système considéré au § 1).

D'après (1) pour le premier point:

2A0 2a,.v. H-
2 A, {«,-«,) H H--J-

De même pour le second point nous trouvons

1
H' —-—

et nous arrivons de nouveau à la formule

(lly — Ux) y - vx)
*

2. — Soit à présent (y, ç) l'élément du connexe conjugué
qui correspond à l'élément (x, u). Alors

uy 0 ' ^ 0 '

L'expression du moment se ramène à



64 D. SINTSOF

Pour de telles paires d'éléments les deux triangles, dont nous
avons parlé au n° 1 coïncident, et les deux expressions de l'aire
sont identiques.

Le triangle se ramène à un point (une droite) dans deux cas:
1° u passe non seulement par y, mais aussi par x.

il o
X

2° p passe non seulement par #, mais aussi par y :

v 0
y

Donc: le moment de deux éléments correspondants d'un connexe
ternaire et de son conjugné s'annule si l'un ou l'autre appartient
à la coincidence principale correspondante.

Remarque. — Dans le cas général de deux éléments (x, u)y

(;y, p) quelconques leur moment s'annule dans les trois cas:

1° Les points x et y coïncident;
2° Les droites u et p coïncident ;

3° Le point A est sur la droite a.

3. — Connexe bilinéaire (collinéation) :

f accu, ^0 • C)

Les éléments correspondants

m ax*i > °avi aiu* (* 2' 3) (2)

forment le connexe conjugué

[abv){aß*)) 0

Si l'on calcule le dernier, on obtient (changeant v en x, u)

t- g (x, u) ux (P-ij) - 2 + 2

De (2) on déduit

Vyax Uf, K fl (* • ") '

vx<l„ax f(X<

Uy ax-aiUi =-«x"„ /(«• ") •
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Donc

uxvy - UyVx uxfAx> 11) — /'2(^' ") •

Ainsi les éléments du connexe bilinéaire pour lesquels le

moment (au sens du n° 2) est nul appartiennent au connexe
identique ou à fx{x, u) 0, — ce n'est qu'un cas particulier de ce

qui a été dit au n° 2 pour le connexe général.
Enfin, si l'élément {x, u) n'appartient pas au connexe (1), le

moment de (x, u) et de son transformé par (1) est nul, s'il appartient

au connexe (2, 2)

uccfA*il<) — f'2(xiu) 0

dans lequel à chaque droite u correspond une courbe de 2me ordre

ayant double contact avec la conique dégénérée — paire de

droites u et u" et pour corde de contact la droite u\ si l'on
désigne les transformées collinéaires successives de u en collinéa-
tion (1) par iï, u",

Réciproquement, au point donné x appartient une courbe de

2me classe passant par les points x, x" et dont les tangentes
correspondantes se coupent en x'.

§ 6. — Le moment dans la théorie des connexes avec
élément (point, plan).

Gomme j'ai indique au commencement, la notion du moment
de deux droites trouve son application dans la théorie des connexes
quaternaires ayant pour l'élément la combinaison (point, plan).
Si l'on prend deux éléments pareils (x, u), (y, e), leurs points x, y
déterminent une droite p (xy), et leurs plans u, v une autre
p' «s- (uv). On peut donc déterminer le moment de ces droites,
et c'est ce que je nomme le moment de deux éléments du connexe
(x, u).

Son expression analytique s'exprime par la formule

xt x2 xH x4

U\ 2/2 2/3 2/4

Pl P* Pz P<

Pl P* P 3
p\

](*i yh — xk y) iuivk ~ "kvi) h ^ g 4)

L'Enseignement mathém., 27« année; 1928.
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car p'v2 — tt.m (uz e4) et ainsi de suite.
Donc, à un facteur près, nous avons

M (y") ^('WkVh— vuxk uiVi ~ + "kxh

2(uxvy ~ Uyvx)

Prenons un élément (#, u) quelconque et son correspondant
dans le connexe conjugué (y, e). Nous aurons pour le moment de
ses deux éléments

/(x, u)\ 2 / ëf ëf \M
y — — ub ^ —~~ • T naïf2 (x u)

\(2/» ")/ FA h J

parce que

donc

ëf Ö/'
PVi » eno, —

1 ë u- k àxh

S //• —- /î /'(.x m)
1 ö

v 7

'»•/(«. «) •

Si l'élément (#, w) appartient au connexe / (#, &) 0, son
moment par rapport à l'élément correspondant du connexe
conjugué devient

P».MM «..S;ô/f Ô/'

y sy ^ ö ö^|

Ainsi, sZ Vélément (x, u) appartient à la coincidence principale
du connexe donné

[f{x, U) o, «iÄ 0)

ow soft correspondant (y, v) appartient à la coincidence principale
du connexe conjugué, Ze moment de ces deux éléments est nul.

La réciproque est vraie: si Ze moment d'un élément du connexe
donné et de son correspondant au connexe conjugué est nul, l'un ou
l'autre appartiennent à la coincidence principale correspondante.

Nous pouvons dire encore: Si pour chaque élément du connexe
donné f, (#, u) 0 nous avons

0
ilXf Ö«;
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ou si l'on a identiquement

le moment de chaque élément et de son conjugué au connexe
f (xu) 0 est nul. Dans ce cas le connexe conjugué du (1) est le

connexe identique 1.

§ 7. — Moment de deux droites dans la théorie des connexes aux
éléments (point, droite) dans le R3.

1. — Considérons un connexe lineo-linaire défini par l'équation

^ai,hixiPhj="°

que l'on peut écrire aussi

<!» {X ;p)=S*,«, V¥$Phj

ou symboliquement
ax(aapp)=axal

De l'ensemble des oo7 éléments (point, droite) de l'espace,
l'équation (1) détache oo6 éléments, que l'on peut caractériser
de cette manière: à chaque point X correspondent (c'est-à-dire
forment avec X l'élément de la configuration) a>3 droites du
complexe linéaire

P(a) S= 0 ; (2)

parmi ces complexes il y a oo2 complexes spéciaux, qui
correspondent aux points d'une surface du 2me ordre

+ «M? 0 (3)

A chaque point de cette surface correspond une droite, avec

i Ceci donne l'idée de considérer les connexes qui sont des transformations rationnelles
du connexe identique: si nous avons un connexe quaternaire

u) 0 (k 1 4)

où — du degré k en x et du h en u, et <ik — du degré m — k en x, n — h en u, à l'aide
de la transformation ouk u), <rvk ^(x, u), nous le transformons en 0.
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les coordonnées Taxe du complexe linéaire spécial (2).
Donc chaque complexe sera spécial si l'équation (3) s'annule
identiquement, ce qui a lieu quand les coefficients kj remplissent
10 relations

ai, 12 ak, 34 ai, 34 ak, 12 + ai, 13 ah, 42 ~t" ai, 42 ah, 13

ai, 14<*k, 23 "h Cti, 23 ah, 14
® (* ' ^ i, 2, 8, 4)

ce qui s'écrit symboliquement

(<ahai + akaj) (ab a'b') 0

lia surface (3) peut présenter les divers cas de dégénérescence
sur lesquels nous n'insistons pas davantage pour le moment.

2. — Avec le point x forment l'élément de la configuration
toutes les droites de l'espace, dont les coordonnées x\ remplissent
les conditions

0 (*,./ 1, 2, 3, 4)

au nombre de 6. En éliminant xx on voit que doivent être
nuls les déterminants du tableau

'1,12 a\, 13 al, 14 «1,23 «1,24 «1,,34

2,12 a2,13 «2,14 a2, 23 «2.24 a.2 34

'3,12 <*3,13 «3,14 «3, 23 «3, 24 as, 34

'4,12 «4,13 «4, 14 «4, 23 <*4,24 «4, 34

ce qui donne en somme 15 relations, dont 3 seulement indépendantes.

Si les conditions sont toutes remplies, les mineurs du
3me ordre n'étant pas tous nuls, on reçoit un système défini
des valeurs x1x2x3x4, qui déterminent un point fondamental
du connexe linéo-linéaire (1): par exemple, pour le connexe

P\2 X%P\Z 3" XiP\\

le tableau (4) prend la forme

0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0
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Tous les mineurs s'annulent identiquement, et parmi les

déterminants du 3me ordre il y en a un qui n'est pas zéro:

«2,12 «2, 13 «2, 14
1 0 0

«3, 12 «3,13 «3,14 0 1 0

«4,12 «4,13 «4,14 0 0 1

Le point x2 0 — x3 — x4 est le point fondamental, ce que l'on
voit d'ailleurs directement de (a).

3. — Prenons à présent quelque droite déterminée. Dans le

connexe (1) lui correspond le plan

o (5)

en général bien déterminé, — seuls les points de ce plan forment
des éléments du connexe (1) avec la droite choisie.

Mais i] existe des droites qui forment l'élément du (1) avec
chaque point de l'espace, qu'on peut appeler les droites fondamentales

; elles sont définies par des équations

0 (i 1, 2, 3, 4) (6)

ce sont donc des droites communes à quatre complexes linéaires
(6), elles sont donc au nombre de deux. En effet si le déterminant
A est différent de zéro

«1,14 « i, 24 «1,34 «1,23

«2,14 «2,24 «2.34 «2 23

«3, 14 «3,24 «3,34 «3,23

«4,14 «4,24 «4.34 «4, 23

on peut résoudre (6) par rapport à p14, p24, p34, p2S (ou pour
quelques autres quatre pkj dont le déterminant correspondant
de la matrice (4) est différent de zéro), et on peut écrire

^Pik ~ ^ik Pi2" cikPi3 » h >
& ~ L 2, 3, 4) (8)

b\2 — c'i3 — A
> bn — c12 0
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Si l'on substitue ces valeurs daus l'équation

PrtPsi + Pl3?42 + Pl4?23 0 '

on a l'équation du 2me degré

APl2 + BPl2Pl3 + Cpig 0 (9)

où l'on a
A, — A />34 -j- />23 '

B A b3i -f- A 632 + ^!4 c23 "t" b2S C14 ' (^)
G A c42 -f- c14 c23

Les droites fondamentales sont donc réelles et distinctes si

ß2 _ 4AC > 0

imaginaires, si
B2 __ 4AC < 0

elles coïncident, si
B2 — 4AC 0 (11)

Dans le .premier cas on pourrait supposer, qu'il peut arriver
que les deux droites fondamentales se rencontrent. Mais il n'est

pas difficile de montrer, que si les droites fondamentales ont un
point commun, elles ont tous leurs points en commun, c'est-à-dire
elles coïncident, la condition d'intersection étant aussi (11):

B2 — 4AC 0

On peut le démontrer par le calcul de la manière suivante.
Soient p et pf deux droites fondamentales de (1). Alors les rap-

—7

ports des coordonnées =ß et — doivent vérifier l'équation (9).
Pl3 P13

Donc

P12 P12 B Pl2'Pl2 C

Pi3 Pis Pis • Pis ^

ou bien

P12 ' P12 Pi2 ' Pis "b Pis ' P12 Pis ' Pis

c —B Ä ' *

Mais
A • P14 bl<iPl2 H" ^14 PlS

k.p'u bliPl2 + ^14 PlS

d'après (8).

(k * 0)
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Substituons ces valeurs en

A2(p, p')

Nous aurons après quelques calculs

A2(p, p') A-(4 AC — B2) (12)

ce qui prouve le théorème énoncé et montre en même temps la
relation qui existe entre l'expression 4AC — B2 et le moment de

deux droites fondamentales du connexe (1).
Ainsi à chaque connexe linéo-linéaire (1) appartient une

certaine caractéristique, indépendante du choix des coordonnées,

qui détermine la position réciproque des deux droites fondamentales

du connexe, c'est le moment des deux droites fondamentales.

SUR LA CONVERGENCE DES SUITES DE FONCTIONS

QUASI-ANALYTIQUES

PAR

Georges Valiron (Strasbourg).

Je me propose d'étendre dans cette note les théorèmes relatifs
aux fonctions holomorphes bornées dans leur ensemble dans un
domaine aux fonctions quasi-analytiques satisfaisant à certaines
conditions.

1. — La famille des fonctions /(#), dérivables et de dérivée
uniformément bornée sur un segment a^x^b, (\f'(x)\ <M
quelle que soit la fonction et quel que soit x sur (a,6)), est une
famille de fonctions également continues. Il s'ensuit que, si une
suite de fonctions f(x; n) de la famille converge sur un ensemble E
de points denses sur le segment (a,b), cette suite converge uniformé-
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