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FORMULES DE GREEN ET DE STOKES 47

qu'un nombre fini de points anguleux grdce & lartifice qui
consiste & arrondir ces singularités; et cela suffit pour que o
soit la différentielle d’une fonction dF.

En résumé, la condition nécessaire et suffisante pour que

-> -»
~Pdx + Qdy + Rdz = V.dM

soit une différentielle totale est que 'on ait:

-

.3 . | T e v 0
dlv(x)V = 0, dlv(y)V = 0 ; dlv(z) = 0 .

12. Conséquences du théoréme fluzx-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences
intéressantes que ’on peut tirer de la généralisation donnée par
M. Bouligand du théoréme flux-divergence. Placons-nous dans le
cas du plan et soit Ozy un systéme d’axes orthogonal et normal.
Donnons-nous une fonction f(z) et considérons le vecteur:

Z f(x)

supposons qu’il admette une divergence -circulaire centrée
continue: Je dis alors que f (x) admet une dérivée continue et que
l'on a:
f'(x) = divaf(z) .
Soit en effet C le contour rectangulaire limité par les droites
Oz, £ = x,, y = a, Oy. Nous avons S étant le domaine de ce

rectangle:
fdlvxf ff(xx vds

Le long de Oz et du coté opposé & Oz, on a:

-p

y = 0

84

l:e long de la paralléle a Oy d’abscisse ‘xO:

- -> - ]
p = x.x =1

)

ét le long de Oy:
Sl : }3=_;;=—1
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On a donec:
ds = af(x,) — af(0) .
Or:

faiv;’/'(a-) = o [diva f(x)da
S 0

car div f(z) dépend de x seul. On a donc :
fla) — £(0) = [ diva f(z)da

x, étant arbitraire, nous en tirons la conclusion annoncée. Ceci
posé, soit I' un cercle de centre (x,, 0) et de rayon p. Nous avons:

. > .1 = -
diva f(x) = llm;—2 xf(x).vds .
HPI‘
Or:
"::g_xox__{_y—yo-'
p e
Done
- x— x,
xr .v = = COS «
e
et
o ds = pda ;
donc

2
div f(z) z = lim ;;I—P f(x, + p cosa) cosada
o=0
' 0
et nous avons le théoréme suivant:
St £ (x) est telle que la quantité:

2
1
;t—p«O/‘f(m -+ p cos a) cos a da

reste bornée en valeur absolue ausst petit soit p, et tende vers une
limite (x) continue quand p tend vers zéro, alors [(X) admet une
dérivée continue égale ¢ o(X).

On voit d’ailleurs facilement que si f'(x) existe la quantité
ci-dessus a une limite qui lui est égale. Il est clair que le théoréme
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ci-dessus est susceptible de nombreuses variantes, puisque pour
définir le jacobien on peut prendre n’importe quelle courbe
fermée sans points doubles entourant le point x et tendant vers
lui.

Prenons en particulier un jacobien carré. Nous aurons a former
la quantité: - |

flz +¢) — flx—p)
2p

et I’on voit que si elle est bornée en valeur absolue et tend vers
une limite continue quand p tend vers zéro, le quotient

[+ p) — fla)
P

qui définit la dérivée admet lui aussl une hmlte egale ala prece-
dente.

Prenons encore un jacobien carré, mais en prenant le point x
comme point de concours des diagonales, qui seront paralléles
respeotiﬁement a Oz et a Oy, et I’on sera amené & faire les hypo-
théses énoncées plus haut sur l’expressmn remarquable:

comme le montre un calcul facile.

Enfin, pour terminer, nous pouvon% remarquer que rien ne
nous obligeait a rester dans l’espace a 2 dimensions, et 'on
pouvalt par. exemple considérer la dlvewence sphemque centrée
dex]‘( ), ¢’est-a-dire : ~

f f(2)

'g"P =

lim

2 étant une sphére de centre x et de rayon p. Un calcul facile
permet d’écrire cette expression:

, llm__ffx—}—pcoqa) stada,:

o:O T
i

on en tire les mémes conclusi‘ons que précédemment.

[’Enseignement mathém., 27 année; 1928. 4
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