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qu'un nombre fini de points anguleux grâce à l'artifice qui
consiste à arrondir ces singularités; et cela suffit pour que &>

soit la différentielle d'une fonction d¥.
En résumé, la condition nécessaire et suffisante pour que

V dx -j- Qdy + Rdz V. dM

soit une différentielle totale est que l'on ait:

diV)^ 0 d{y(y)V 0 î div(*)^ 0 *

12. Conséquences du théorème flux-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences
intéressantes que l'on peut tirer de la généralisation donnée par
M. Bouligand du théorème flux-divergence. Plaçons-nous dans le

cas du plan et soit 0xy un système d'axes orthogonal et normal.
Donnons-nous une fonction f(x) et considérons le vecteur:

xf(x)

supposons qu'il admette une divergence circulaire centrée
continue: Je dis alors que / (x) admet une dérivée continue et que
l'on a:

f'(x) divxf(x)

Soit en effet G le contour rectangulaire limité par les droites
Ox, x x0, y ~ a, Oy, Nous avons S, étant le domaine de ce

rectangle:

J* div x f(x) — J* f(x) x v ds

S C

Le long de Ox et du côté opposé à Ox, on a:

x v 0

le long de la parallèle à Oy d'abscisse x0:

->• ->• -> -+
t

X V — x x 1 1

et le long de Oy:
', i •+>*

X V — X X 1
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On a donc:

J f(x) x v ds — af(x0) — af(0)
c

Or:

J div x f(x) a J div x f(x) dx
s o

car div x f(x) dépend de x seul. On a donc :

*0

f(xo) - f(°) fdi
0

x0 étant arbitraire, nous en tirons la conclusion annoncée. Ceci

posé, soit T un cercle de centre (;r0, 0) et de rayon p. Nous avons:
1

7?
-» 1 f* -*

div m f(x) lim -—^ J x f(x) v ds

r
Or:

Donc

: + o-

et

donc

+ x — xa
x v cos a

P

o ds — pda ;

2r
—v 1 /*

div fix) x — lim — / f(x0 + p cos a) cos a da
o=0 *pJ

et nous avons le théorème suivant :

Si f (x) est telle que la quantité :

2r
1 f*— I f(x -f p cos a) cos a da.

^P
ö

reste bornée en valeur absolue aussi petit soit p, et tende vers une
limite <p(x) continue quand p tend vers zéro, alors /(x) admet une
dérivée continue égale à ®(x).

On voit d'ailleurs facilement que si f'(x) existe la quantité
ci-dessus a une limite qui lui est égale. Il est clair que le théorème
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ci-dessus est susceptible de nombreuses variantes, puisque pour
définir le jacobien on peut prendre n'importe quelle courbe

fermée sans points doubles entourant le point x et tendant vers
lui.

Prenons en particulier un jacobien carré. Nous aurons à former
la quantité:

f(x + p) — f(x — p)

2P

et l'on voit que si elle est bornée en valeur absolue et tend vers

une limite continue quand p tend vers zéro, le quotient

f{x + p) — f[x)
P

qui définit la dérivée admet lui aussi une limite égale à la
précédente.

Prenons encore un jacobien carré, mais en prenant le point x
comme point de concours des diagonales, qui seront parallèles
respectivement a Oxet à 0y, et l'on sera amené à faire les
hypothèses énoncées plus haut sur l'expression remarquable:

r-Xo+P *o

J2 ff(x) dx ~ f f(x) dx
L-0Cq xq-P

comme le montre un calcul facile.
Enfin, pour terminer, nous pouvons remarquer que rien ne

nous obligeait à rester dans l'espace à 2 dimensions, et l'on
pouvait par. exemple considérer la divergence sphérique centrée
de x / (x), c'est-à-dire :

i r -+ -+
lim — J f(x) x v d<5

2 étant une sphère de centre x et de rayon p. Un calcul facile
permet d'écrire cette expression:

TZ

J* f(x + P c°s a). sia 2 a da. ;

0

on en tire les mêmes conclusions que précédemment.
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