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tende vers zéro quand naugmente indéfiniment, ainsi que:

/-*
/» - -v. dM - Jv. cOAn

r r„
Or:

/7o^Y.:nd,tl=f\.dMn ('3)
v rti A n

car il est clair que l'on a:

J"v.dMr= l^
r nJlci

Q étant une face triangulaire quelconque de 2n, car tout côté

appartenant à deux triangles à la fois de 2n sera parcouru dans
-f ->

les deux sens, et les intégrales de V.dM correspondantes se

détruiront; finalement il ne restera que les intégrales relatives
aux côtés de la courbe limite rn. On déduit alors immédiatement
l'identité (12) de l'équation (13) en tenant compte de ce que nous
avons dit plus haut. Le théorème de Stokes se trouve ainsi établi.

Remarqué: La formule de Stokes montre que l'intégrale:

—>- -*•

rot V da

prise sur toute surface fermée 2 est identiquement nulle. On en

déduit alors facilement que le champ vectoriel rot V, défini par
l'équation (11) admet partout une divergence qui satisfait à

l'identité remarquable :

div (rot V) 0

comme dans le cas classique où les composantes de V auraient
des dérivées des deux premiers ordres.

11. Composantes du rotationnel.

Nous allons établir le théorème fondamental suivant :

Soit le vecteur :

Y X P(*, y, Z) + y Q (^ y\ z) + 1 R(ar, y, z)
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et M (x0, y0, z0) un point quelconque de Vespace de coordonnées

(x0, y0l z0). Considérons les vecteurs:

chacun d'eux admet en M une divergence circulaire centrée,
et les valeurs de ces divergences sont respectivement égales aux

composantes en M du rotationnel de V.
Le théorème est bien exact dans le cas où P, Q, R sont déri-

vables par rapport à (x, y1 z) ; en effet ces divergences sont :

Nous allons montrer qu'il est encore vrai dans le cas actuel
plus général.

Soit G un cercle de centre M, de rayon p contenu dans le plan
mené par M perpendiculairement à Ox.

La formule de Stokes nous donne:

v1 2/R(«r0> y>%) — *QK> y> z)

v2 Z ?{x, y0, z) — xR{x, y0, z)

V3 xQ(x, y, z0) — y P (x, y, z0)

öR
__

öQ öP öR öQ öP

by bz ' bz bx
*

bx by

/* -¥ —>- -I v rot V da

S c

Or:

x ; V dM [y Q (x0 y z) + z R (x0 y z) ]

Soit n la normale au cercle G dirigée vers l'extérieur. On a

facilement:

[yQK' y> *) + y> »)! =» [2/RK' 2/>*) — *QK> 2/»

s étant l'arc de C. On a donc:

s c

ce qui peut encore s'écrire:

—>- ^ 1 /» - —>- ^ —>- -* !_/»-«#. rotM V + — J x • Crot V — rotM -1 ~ S J ^ u ds

S C
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L'expression:

~ J x [rot V — rotMV] d<s

tend vers zéro quand le rayon du cercle G tend vers zéro; en

effet, elle est plus petite que:

— max surcj X Xjj j J% d<5 — max suvcj X X. i

M I

en désignant par X, Y, Z les composantes de rot V. On a donc

finalement:

X X r£tMV, divM Vj

Y y .^ÎmY divMY2

Z z rot Y div V®
M M 3

Nous écrirons encore ces équations :

X - diV)v
Y div(y)Y

Z div(î)Y

les symboles figurant dans les seconds membres ont une
signification évidente d'après ce que nous avons dit plus haut. On a
d'ailleurs:

div(*) v div (V A *)

div(/ div(VA y) (14)

div{z)V div (V A z)

car, d'après la relation:

div (Y /\ u) u rot Y (8)'

dont nous sommes partis pour définir le rotationnel, on a bien:

X div (Y /\ ~x) ; Y div (Y /\ y) ; Z div (Y /\ z)
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Remarquons en passant que l'existence de ces trois dernières
divergences entraîne celle du rotationnel, en vertu de l'identité
(8'). Nous allons de même établir la proposition suivante:

Si un champ vectoriel V admet trois divergences partielles il
admet aussi un rotationnel dont les composantes sont :

x div(*)V ; Y div(,)Y ; Z div(s)v

D'après la remarque précédente il suffit d'établir que

div (V /\ x) div (V /\ y) div (V /\ z)

existent et satisfont aux équations (14). Calculons donc

div (V A ^)- On a:

v A x yR (x » y > z) — zQ_(x, y, z)

d faut calculer l'intégrale:

I J* (y R — zQ) v de
S

étendu à la sphère 2 de centre M qui sera pris pour origine des

axes de coordonnées, et de rayon p. Or:

- -v An -f~

en désignant par n la normale extérieure au cercle Cx intersection
de la sphère 2 avec un plan d'abscisse x, perpendiculaire à M#.
On a:

- - Vp2-.
v n — À —-

P

et:

t r Vp2 — *2
1 J "^4 (y.

Or, en désignant par ds un élément de longueur du cercle Ca,

nous pourrons écrire :

p dx ds
d<3 —_

V p2 — x2
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et nous avons l'identité suivante, facile à établir:

i= rpvp2—*2 ?dx

4 p

Or:

J* Yj. n ds — J* divXV dydz

^x S#

Sx désignant l'aire du cercle Cx. Il vient donc:

+P

I J dx J dixx\ dy dz

—P Sx

Passons aux coordonnées polaires, en posant:

y — r cos 6 ; z r sin 6

(0 ^ r ^ Vp2 — x2) ; (0 ^ 6 ^ 2ic)

div^, V o (x, y y z)

Il vient alors:
+f> ^p2-y:2

l — J* dx J* d6 J*®(x » r cos 0 r sin 0)

-p oo
On a d'ailleurs par la formule de la moyenne :

/f)2_a:2 \/p2-x2
j*<p (oc r cos 0 r sin 0) r dr cp (x rQ cos 0 rQ sin 0) j*r dr
0 0

r0 étant une certaine valeur de r comprise entre 0 et \/p2 — x2.
Finalement on voit que l'on peut écrire:

+P
1 K » r0 cos 0o » ro sin eo) f n (P2 — x2) dx

-P

ou:
4

I -gKp3<f(x0, cos 0o r0 sin 0O)

avec:
lxo\ - P
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Donc le rapport de I au volume de la sphère 2 qui est égal à:

rQ cos60, r0 sin 0O)

tend bien vers une limite égale à

?(0, o, 0)

d'après la continuité de y. Or, cette limite n'est autre que la
valeur de

div (V /\ x)

au point M, et le théorème se trouve ainsi établi.

Application. — Soit Vexpression:

co P [x y, z) dx + Q (x y, z) dy + R [x y, z) dz ;

pour qu'elle représente la différentielle totale d'une fonction
F (x, y, 2) j7 faut et il suffit que le vecteur Y de composantes P, Q, R
ait un rotationnel identiquement nul.

En effet, pour que &> soit une différentielle totale, il faut et il
suffit que son intégrale le long de tout contour fermé soit nulle.
Alors cela aura lieu en particulier le long de tout cercle T de

centre M(^, z0) contenu dans le plan

X XQ

Donc div(a) Y existe et est nulle1 ; il en est de même pour
div(y) V, div(Z) V, et d'après ce que nous avons vu le vecteur V
admet un rotationnel de composantes div^V, diV(y>V, div(2)V,
identiquement nul.

Inversement si le rotationnel est nul, la Formule de Stokes

montre que

J*Pdx Q dy -j- Rdz J* w '

c

est nulle le long de tout contour fermé sans points anguleux;
cette dernière restriction pouvant être levée quand G ne présente

1 On a en effet le long de r ;

V'.dM J Y1.nds
r r

—f

n étant le vecteur unité de la normale à r, Vj. le vecteur: y R(aco, y, z) — z Q(xq, y, z),
déjà rencontré.
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qu'un nombre fini de points anguleux grâce à l'artifice qui
consiste à arrondir ces singularités; et cela suffit pour que &>

soit la différentielle d'une fonction d¥.
En résumé, la condition nécessaire et suffisante pour que

V dx -j- Qdy + Rdz V. dM

soit une différentielle totale est que l'on ait:

diV)^ 0 d{y(y)V 0 î div(*)^ 0 *

12. Conséquences du théorème flux-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences
intéressantes que l'on peut tirer de la généralisation donnée par
M. Bouligand du théorème flux-divergence. Plaçons-nous dans le

cas du plan et soit 0xy un système d'axes orthogonal et normal.
Donnons-nous une fonction f(x) et considérons le vecteur:

xf(x)

supposons qu'il admette une divergence circulaire centrée
continue: Je dis alors que / (x) admet une dérivée continue et que
l'on a:

f'(x) divxf(x)

Soit en effet G le contour rectangulaire limité par les droites
Ox, x x0, y ~ a, Oy, Nous avons S, étant le domaine de ce

rectangle:

J* div x f(x) — J* f(x) x v ds

S C

Le long de Ox et du côté opposé à Ox, on a:

x v 0

le long de la parallèle à Oy d'abscisse x0:

->• ->• -> -+
t

X V — x x 1 1

et le long de Oy:
', i •+>*

X V — X X 1
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