Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1928)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ROTATIONNEL ET FORMULE DE STOKES

Autor: Bouligand, Georges / Roussel, Andrè

Kapitel: 11. Composantes du rotationnel.

DOI: https://doi.org/10.5169/seals-21866

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

tende vers zéro quand n augmente indéfiniment, ainsi que:

$$\left|\int\limits_{\Gamma} \vec{\operatorname{V}} \cdot d\vec{\operatorname{M}} - \int\limits_{\Gamma_n} \vec{\operatorname{V}} \cdot d\vec{\operatorname{M}}_n \right|$$

Or:

$$\int_{\Sigma_n} \overrightarrow{\operatorname{rot}} \overrightarrow{\mathbf{V}} \cdot \overrightarrow{\mathbf{v}}_n \, d\sigma_n = \int_{\Gamma_n} \overrightarrow{\mathbf{V}} \cdot d\overrightarrow{\mathbf{M}}_n \tag{13}$$

car il est clair que l'on a:

$$\int_{\Gamma_n} \vec{\mathbf{V}} \cdot d\vec{\mathbf{M}}_r = \sum_{i=1}^{i=n} \int_{C_i} \vec{\mathbf{V}} \cdot d\vec{\mathbf{M}}$$

 C_i étant une face triangulaire quelconque de Σ_n , car tout côté appartenant à deux triangles à la fois de Σ_n sera parcouru dans les deux sens, et les intégrales de $\vec{V}.d\vec{M}$ correspondantes se détruiront; finalement il ne restera que les intégrales relatives aux côtés de la courbe limite Γ_n . On déduit alors immédiatement l'identité (12) de l'équation (13) en tenant compte de ce que nous avons dit plus haut. Le théorème de Stokes se trouve ainsi établi.

Remarque: La formule de Stokes montre que l'intégrale:

$$\int_{\Sigma} \overrightarrow{\operatorname{rot}} \overset{\rightarrow}{\mathbf{V}} \cdot \overset{\rightarrow}{\mathbf{v}} d\mathbf{\sigma}$$

prise sur toute surface fermée Σ est identiquement nulle. On en déduit alors facilement que le champ vectoriel \overrightarrow{rot} \overrightarrow{V} , défini par l'équation (11) admet partout une divergence qui satisfait à l'identité remarquable:

$$\operatorname{div}(\overrightarrow{\operatorname{rot}}\overrightarrow{V}) = 0$$

comme dans le cas classique où les composantes de \vec{V} auraient des dérivées des deux premiers ordres.

11. Composantes du rotationnel.

Nous allons établir le théorème fondamental suivant : Soit le vecteur :

$$\vec{V} = \vec{x} P(x, y, z) + \vec{y} Q(x, y, z) + \vec{z} R(x, y, z)$$

et M (x_0, y_0, z_0) un point quelconque de l'espace de coordonnées (x_0, y_0, z_0) . Considérons les vecteurs:

$$\overrightarrow{V_1} = \overrightarrow{y} R(x_0, y, z) - \overrightarrow{z} Q(x_0, y, z)$$

$$\overrightarrow{V_2} = \overrightarrow{z} P(x, y_0, z) - \overrightarrow{x} R(x, y_0, z)$$

$$\overrightarrow{V_3} = \overrightarrow{x} Q(x, y, z_0) - \overrightarrow{y} P(x, y, z_0)$$

chacun d'eux admet en M une divergence circulaire centrée, et les valeurs de ces divergences sont respectivement égales aux composantes en M du rotationnel de $\vec{\mathbf{V}}$.

Le théorème est bien exact dans le cas où P, Q, R sont dérivables par rapport à (x, y, z); en effet ces divergences sont:

$$\frac{\partial \mathbf{R}}{\partial y} - \frac{\partial \mathbf{Q}}{\partial z}; \quad \frac{\partial \mathbf{P}}{\partial z} - \frac{\partial \mathbf{R}}{\partial x}; \quad \frac{\partial \mathbf{Q}}{\partial x} - \frac{\partial \mathbf{P}}{\partial y}.$$

Nous allons montrer qu'il est encore vrai dans le cas actuel plus général.

Soit C un cercle de centre M, de rayon ρ contenu dans le plan mené par M perpendiculairement à Ox.

La formule de Stokes nous donne:

$$\int_{S} \overrightarrow{v} \cdot \overrightarrow{rot} \overrightarrow{V} \cdot d\sigma = \int_{C} \overrightarrow{V} \cdot d\overrightarrow{M} .$$

Or:

$$\vec{v} = \vec{x} ; \qquad \vec{\mathbf{V}} \cdot d\vec{\mathbf{M}} = [\vec{y} \mathbf{Q} (x_0, y, z) + \vec{z} \mathbf{R} (x_0, y, z)] \cdot d\vec{\mathbf{M}} .$$

Soit \vec{n} la normale au cercle C dirigée vers l'extérieur. On a facilement:

 $[\vec{y} Q(x_0, y, z) + \vec{z} R(x_0, y, z)] \cdot d\vec{M} = [\vec{y} R(x_0, y, z) - \vec{z} Q(x_0, y, z)] \vec{n} ds$, s étant l'arc de C. On a done:

$$\int_{S} \overrightarrow{x} \cdot \overrightarrow{rot} \overrightarrow{V} d\sigma = \int_{C} \overrightarrow{V}_{1} \cdot \overrightarrow{n} ds$$

ce qui peut encore s'écrire:

$$\vec{x} \cdot \overrightarrow{\text{rot}}_{\mathbf{M}} \vec{\mathbf{V}} + \frac{1}{\mathbf{S}} \int_{\mathbf{S}} \vec{x} \cdot [\overrightarrow{\text{rot}} \vec{\mathbf{V}} - \overrightarrow{\text{rot}}_{\mathbf{M}} \vec{\mathbf{V}}] d\sigma = \frac{1}{\mathbf{S}} \int_{\mathbf{C}} \vec{\mathbf{V}} \cdot \vec{u} ds .$$

L'expression:

$$\frac{1}{S} \int_{S} \vec{x} \cdot [\overrightarrow{\text{rot}} \ \overrightarrow{V} - \overrightarrow{\text{rot}}_{M} \overrightarrow{V}] \ d\sigma$$

tend vers zéro quand le rayon du cercle C tend vers zéro; en effet, elle est plus petite que:

$$\frac{1}{S} \max_{\text{sur } C} |X - X_{\text{M}}| \int_{S} d\sigma = \max_{\text{sur } C} |X - X_{\text{M}}|$$

en désignant par X, Y, Z les composantes de \overrightarrow{rot} \overrightarrow{V} . On a donc finalement:

$$X = \overrightarrow{x} \cdot \overrightarrow{rot}_{M} \overrightarrow{V} = \operatorname{div}_{M} \overrightarrow{V}_{1}$$

$$Y = \overrightarrow{y} \cdot \overrightarrow{rot}_{M} \overrightarrow{V} = \operatorname{div}_{M} \overrightarrow{V}_{2}$$

$$Z = \overrightarrow{z} \cdot \overrightarrow{rot}_{M} \overrightarrow{V} = \operatorname{div}_{M} \overrightarrow{V}_{3}$$

Nous écrirons encore ces équations:

$$X = \operatorname{div}_{(x)} \vec{V}$$

$$Y = \operatorname{div}_{(y)} \vec{V}$$

$$Z = \operatorname{div}_{(z)} \vec{V}$$

les symboles figurant dans les seconds membres ont une signification évidente d'après ce que nous avons dit plus haut. On a d'ailleurs:

$$div_{(x)} \vec{V} = div (\vec{V} \wedge \vec{x})$$

$$div_{(y)} \vec{V} = div (\vec{V} \wedge \vec{y})$$

$$div_{(z)} \vec{V} = div (\vec{V} \wedge \vec{z})$$
(14)

car, d'après la relation:

$$\operatorname{div}(\overset{\rightarrow}{\mathbf{V}} \wedge \vec{u}) = \vec{u} \overset{\rightarrow}{\operatorname{rot}} \overset{\rightarrow}{\mathbf{V}}$$
 (8)'

dont nous sommes partis pour définir le rotationnel, on a bien:

$$X = \operatorname{div}(\vec{V} \wedge \vec{x}) ; \quad Y = \operatorname{div}(\vec{V} \wedge \vec{y}) ; \quad Z = \operatorname{div}(\vec{V} \wedge \vec{z}) .$$

Remarquons en passant que l'existence de ces trois dernières divergences entraîne celle du rotationnel, en vertu de l'identité (8'). Nous allons de même établir la proposition suivante:

Si un champ vectoriel \vec{V} admet trois divergences partielles il admet aussi un rotationnel dont les composantes sont:

$$X = \operatorname{div}_{(x)} \vec{V}$$
; $Y = \operatorname{div}_{(y)} \vec{V}$; $Z = \operatorname{div}_{(z)} \vec{V}$.

D'après la remarque précédente il suffit d'établir que

$$\operatorname{div}(\vec{\mathbf{V}} \wedge \vec{x})$$
, $\operatorname{div}(\vec{\mathbf{V}} \wedge \vec{y})$, $\operatorname{div}(\vec{\mathbf{V}} \wedge \vec{z})$

existent et satisfont aux équations (14). Calculons donc div $(\vec{V} \wedge \vec{x})$. On a:

$$\vec{V} \wedge \vec{x} = \vec{y} R(x, y, z) - \vec{z} Q(x, y, z)$$

il faut calculer l'intégrale:

$$I = \int_{\Sigma} (\vec{y} R - \vec{z} Q) \cdot \vec{v} d\sigma$$

étendu à la sphère Σ de centre M qui sera pris pour origine des axes de coordonnées, et de rayon ρ . Or:

$$\vec{v} = \lambda \vec{n} + \mu \vec{x}$$

en désignant par n la normale extérieure au cercle C_x intersection de la sphère Σ avec un plan d'abscisse x, perpendiculaire à Mx. On a:

$$\vec{v} \cdot \vec{n} = \lambda = \frac{\sqrt{\rho^2 - x^2}}{\rho}$$

et:

$$I = \int_{\Sigma} \frac{\sqrt{\rho^2 - x^2}}{\rho} (\vec{y} R - \vec{z} Q) \cdot \vec{n} d\sigma.$$

Or, en désignant par ds un élément de longueur du cercle C_x , nous pourrons écrire:

$$d\sigma = \frac{\rho \, dx \, ds}{\sqrt{\rho^2 - x^2}}$$

et nous avons l'identité suivante, facile à établir:

$$I = \int_{-\rho}^{+\rho} \frac{\sqrt{\rho^2 - x^2}}{\rho} \cdot \frac{\rho \, dx}{\sqrt{\rho^2 - x^2}} \int_{\mathcal{C}_x} \vec{\mathbf{V}}_1 \cdot \vec{n} \, ds .$$

Or:

$$\int_{\mathcal{C}_x} \vec{\nabla}_1 \cdot \vec{n} \, ds = \int_{\mathcal{S}_x} \operatorname{div}_x \vec{\nabla} \, dy \, dz$$

 S_x désignant l'aire du cercle C_x . Il vient donc:

$$I = \int_{-\rho}^{+\rho} dx \int_{S_x} \operatorname{div}_x \vec{\nabla} dy dz .$$

Passons aux coordonnées polaires, en posant:

$$y = r \cos \theta \; ; \quad z = r \sin \theta$$
 $\left(0 \le r \le \sqrt{\rho^2 - x^2}\right) \; ; \quad \left(0 \le \theta \le 2\pi\right)$ $\operatorname{div}_x \vec{\mathsf{V}} = \varphi\left(x, y, z\right) \; .$

Il vient alors:

$$I = \int_{-\rho}^{+\rho} dx \int_{0}^{2\pi} d\theta \int_{0}^{\sqrt{\rho^2 - x^2}} \varphi(x, r \cos \theta, r \sin \theta) r dr.$$

On a d'ailleurs par la formule de la moyenne:

$$\int_{0}^{\sqrt{\rho^{2}-x^{2}}} \varphi(x, r \cos \theta, r \sin \theta) r dr = \varphi(x, r_{0} \cos \theta, r_{0} \sin \theta) \int_{0}^{\sqrt{\rho^{2}-x^{2}}} r dr$$

 r_0 étant une certaine valeur de r comprise entre 0 et $\sqrt{\rho^2 - x^2}$. Finalement on voit que l'on peut écrire:

$$I = \varphi(x_0, r_0 \cos \theta_0, r_0 \sin \theta_0) \int_{-\rho}^{+\rho} \pi(\rho^2 - x^2) dx$$

ou:

$$I = \frac{4}{3} \pi \rho^3 \varphi (x_0, r_0 \cos \theta_0, r_0 \sin \theta_0)$$

avec:

$$|x_0| \leq \rho$$
 $r_0 < \rho$.

Donc le rapport de I au volume de la sphère Σ qui est égal à:

$$\varphi(x_0, r_0 \cos \theta_0, r_0 \sin \theta_0)$$

tend bien vers une limite égale à

$$\varphi(0,0,0)$$

d'après la continuité de φ . Or, cette limite n'est autre que la valeur de

div
$$(\vec{V} \wedge \vec{x})$$

au point M, et le théorème se trouve ainsi établi.

Application. — Soit l'expression:

$$\omega = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz;$$

pour qu'elle représente la différentielle totale d'une fonction F(x, y, z) il faut et il suffit que le vecteur \vec{V} de composantes P, Q, R ait un rotationnel identiquement nul.

En effet, pour que ω soit une différentielle totale, il faut et il suffit que son intégrale le long de tout contour fermé soit nulle. Alors cela aura lieu en particulier le long de tout cercle Γ de centre $M(x, y_0, z_0)$ contenu dans le plan

$$x = x_0.$$

Donc $\operatorname{div}_{(x)} \vec{\operatorname{V}}$ existe et est nulle 1; il en est de même pour $\operatorname{div}_{(y)} \vec{\operatorname{V}}$, $\operatorname{div}_{(z)} \vec{\operatorname{V}}$, et d'après ce que nous avons vu le vecteur $\vec{\operatorname{V}}$ admet un rotationnel de composantes $\operatorname{div}_{(x)} \vec{\operatorname{V}}$, $\operatorname{div}_{(y)} \vec{\operatorname{V}}$, $\operatorname{div}_{(z)} \vec{\operatorname{V}}$, identiquement nul.

Inversement si le rotationnel est nul, la Formule de Stokes montre que

$$\int_{C} P dx + Q dy + R dz = \int \omega$$

est nulle le long de tout contour fermé sans points anguleux; cette dernière restriction pouvant être levée quand C ne présente

$$\int_{\Gamma} \vec{\nabla} \cdot d\vec{M} = \int_{\Gamma} \vec{\nabla}_1 \cdot \vec{n} \, ds$$

¹ On a en effet le long de Γ ;

 $[\]vec{n}$ étant le vecteur unité de la normale à Γ , $\vec{\nabla}_{1}$ le vecteur: $\vec{y} R(x_0, y, z) - \vec{z} Q(x_0, y, z)$, déjà rencontré.

qu'un nombre fini de points anguleux grâce à l'artifice qui consiste à arrondir ces singularités; et cela suffit pour que w soit la différentielle d'une fonction dF.

En résumé, la condition nécessaire et suffisante pour que

$$Pdx + Qdy + Rdz = \vec{V} \cdot d\vec{M}$$

soit une différentielle totale est que l'on ait:

$${\rm div}_{(x)} \vec{\mathbf{V}} \; = \; 0 \;\; , \qquad {\rm div}_{(y)} \vec{\mathbf{V}} \; = \; 0 \;\; ; \qquad {\rm div}_{(z)} \vec{\mathbf{V}} \; = \; 0 \;\; .$$

12. Conséquences du théorème flux-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences intéressantes que l'on peut tirer de la généralisation donnée par M. Bouligand du théorème flux-divergence. Plaçons-nous dans le cas du plan et soit Oxy un système d'axes orthogonal et normal. Donnons-nous une fonction f(x) et considérons le vecteur:

$$\overrightarrow{x} f(x)$$

supposons qu'il admette une divergence circulaire centrée continue: Je dis alors que f (x) admet une dérivée continue et que l'on a:

$$f'(x) = \operatorname{div} \vec{x} f(x)$$
.

Soit en effet C le contour rectangulaire limité par les droites Ox, $x = x_0$, y = a, Oy. Nous avons S, étant le domaine de ce rectangle:

$$\int_{S} \operatorname{div} \overrightarrow{x} f(x) = \int_{C} f(x) \overrightarrow{x} \cdot \overrightarrow{v} ds .$$

Le long de Ox et du côté opposé à Ox, on a:

$$\overrightarrow{x} \cdot \overrightarrow{v} = 0$$

le long de la parallèle à Oy d'abscisse x_0 : $\overrightarrow{x}.\overrightarrow{v} = \overrightarrow{x}.\overrightarrow{x} = 1$ et le long de Oy: $\overrightarrow{x}.\overrightarrow{v} = -\overrightarrow{x}.\overrightarrow{x} = -1$

$$\overrightarrow{x} \cdot \overrightarrow{v} = -\overrightarrow{x} \cdot \overrightarrow{x} = -1$$