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tende vers zéro quand n augmente indéfiniment, ainsi que:

f’\’f.d?\’a _f’»’*.di’an
r Ly

Or:

Tl V.7 ds, = [ V.di, (13)

r

-
~“n n

car 1l est clair que l'on a:

i—=n

f‘\’f.dﬁr=2f‘7-dﬁ
rn

i=1 C;

C; étant une face triangulaire quelconque de 3, car tout coté
appartenant a deux triangles a la fois de X, sera parcouru dans
les deux sens, et les intégrales de V.dM correspondantes se
détruiront; finalement il ne restera que les intégrales relatives
aux cotés de la courbe limite T',,. On déduit alors immédiatement
I'identité (12) de I’équation (13) en tenant compte de ce que nous
avons dit plus haut. Le théoréme de Stokes se trouve ainsi établi.

Remarqué: La formule de Stokes montre que l’intégrale:

—_ - -

rot V.v do

2

“prise sur toute surface fermée 3 est identiquement nulle. On en

déduit alors facilement que le champ vectoriel rot {7, défini par
Iéquation (11) admet partout une divergence qui satisfait a
I'identité remarquable:

div (rot V) = 0

. N _’ .
comme dans le cas classique ou les composantes de V auraient
des dérivées des deux premiers ordres.

11. Composantes du rotationnel.

Nous allons établir le théoréme fondamental suivant :
Soit le vecteur :

- -> -
V==xPx, y 2 +yQx, y, 2 + zR(z, y, 2
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et M (o, Yo, 29) un point quelconque de U'espace de coordonnées
(o, Yo, 29)- Considérons les vecteurs :

—_— - . ->
V., =yR(x,, y. 2) — 3Q(x,, ¥, 2)
—_— -> -
Vi =3P 5. 9 — PR(. 4. 9

- -+
Ve =2Q(x, y, 5) —yPlx, y, z)

chacun d’eux admet en M une DIVERGENCE CIRCULAIRE CENTREE,
et les valeurs de ces divergences sont respectivement égales aux

composantes en M du rotationnel de V.
Le théoréme est bien exact dans le cas ou P, Q, R sont déri-
vables par rapport a (z, y, z); en effet ces divergences sont:

>R 2Q  »P »R_~ »Q »P

oy oz vz ox  dx  dy
Nous allons montrer qu’il est encore vrai dans le cas actuel
plus général.
Soit C un cercle de centre M, de rayon p contenu dans le plan
mené par M perpendiculairement a Ox.
La formule de Stokes nous donne:

. - — - -> -+
fv.rotV.do' = V.dM .
S C
Or:
V=2 i’).df\)’l=[;Q(xo,y,z)+ZR(xo,y,z)].dM.

- o« . I3
Soit n la normale au cercle G dirigée vers ’extérieur. On a
facilement:

-> - -> - -> -
[yQ(x, ¥, 3) + 2R(%, y, 2)].dM = [y R(x,. y, 2) —2Q(x,, y, 2)]nds,
s étant ’arc de C. On a donc:
f;.;oT-\?dc =f-\71.;ds
8 c
ce qui peut encore s’écrire:

— - 1

-+ - 1 -+ > - —_ - > -
x.rotMV—{—-S-fx.[rotV—rotMV]dc=-,-‘/‘V.u'ds.
S C
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L’expression:

bf rotV—rot V]d

tend vers zéro quand le rayon du cercle C tend vers zéro: en
effet, elle est plus petite que:

1 .
S max gurc| X — XM]fdc — max guo| X — X, |
S

en désignant par X, Y, Z les composantes de rot V. On a done

finalement :
; - —> = -
; X = «x. rotMV. = div M\/1
S 3 = -+
Y =y .rotMV = dl\'MV2
- —>» > -
Z = 3. ‘OtMV = anV3

Nous écrirons encore ces équations:

| X = div,_ V

!~ D, Vg
-

Y == dIV )V
->
3

Z = dlv(

les symboles figurant dans les seconds membres ont une signi-
fication évidente d’aprés ce que nous avons dit plus haut. On a

d’ailleurs:
div,, V = div (V A 2)
. - - -
div, V = div(V A\ 3) (14)
div, ¥V = div (¥ A )

car, d’aprés la relation:

- - —> =

div(V Au) = wrotV | (8)’
dont nous sommes partis pour définir le rotationnel, on a bien:

=divVAZ); Y=div(VAg: Z=div(VA2Z.
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Remarquons en passant que ’existence de ces trois derniéres
divergences.entraine. celle- du rotationnel, en vertu de ’identité
(8’). Nous allons de méme établir la proposition suivante:

] = . . # .
St un champ vectoriel V admet trois divergences partielles il
admet aussi un rotationnel dont les composantes sont :

. - . - . ->
X = le(x)V » Y = le(y)V ; Z = dIV(z)V .

D’apfés la remarque précédente il suffit d’établir que
div(VAz), div(VAgy) . div(VA?2

existent et satisfont aux équations (14). Calculons donc
div (V A z). On a:

- - - -
VAxz =yR(x, y, 5) —z2Q(x, y, 3)

il faut calculer I'intégrale:

1=f('y’R — 2Q).vds

étendu a la sphére 2 de centre M qui sera pris pour origine des
axes de coordonnées, et de rayon p. Or:

-
14

* . . -
en désignant par n la normale extérieure au cercle Cy intersection
de la sphére £ avec un plan d’abscisse x, perpendiculaire a Mz.
On a:

2 . 2
Thea= V=2
p

->
. n

et:

2 __ 4o -
1=Lf—‘£e—;—*i(§R——;Q).ndc.

Or, en désignant par ds un élément de longueur du cercle Cy,
nous pourrons écrire:
pdxds

deo =
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et nous avons l'identité suivante, facile & établir:
+p

I=f VP2;—~%‘2 pdx 'f?"l.;{ds.

P PV

Or:

fvl.;ds =fdi\'w-{/dydz
Cap Sy

S, désignant 1’aire du cercle Cy. Il vient done:

+p
I = fdxfdivx—{fdydz :
-pP S

X
Passons aux coordonnées polaires, en posant:

y = rcosf ; z = rsinf

O=r=yY@—2a?): (0=0=2n
-
diva = o(r, ¥y, 3) .
Il vient alors:
2= ‘/P2—372

I = jpdxfdefp(x, rcosf, rsinf)rdr .
0 0

P
On a d’ailleurs par la formule de la moyenne:

Vp2-z? Vp2—z2

fcp(x, rcosf, rsinl)rdr = o(x, r cosb, rosine)frdr
0 0

r 6tant une certaine valeur de r comprise entre 0 et V/p% — z2.
Finalement on voit que I’on peut écrire:

+p
I = o(x,, rycos by, r,sin b)) /.‘n:(p2 — 2% dx
—P
ou:
4

I = §7rp3cp(xo, ro cos B, ry sin 0 )

avec:
fxoléP \"0<P°
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Donc le rapport de I au volume de la sphére 3 qui est égal a:
¢ (x,, rycosb,, rysinf)
tend bien vers une limite égale & |
(0, 0, 0)

d’aprés la continuité de . Or, cette limite n’est autre {Iue la
valeur de -
div (V A 7)

au point M, et le théoréme se trouve ainsi établi.

Application. — Soit ‘l’expression ;
w = Px, y, z )dx—{—Q(x Y 2)dy + R(x, y, 2)dz ;

pour qu’elle représente la dszerentaelle totale d’une fonction

F(z,y, z) il faut et il suffit que le vecteur V de composantes P,Q, R
ait un rotationnel identiguement nul.
En effet, pour que o soit une différentielle totale, il faut et il
suffit que son intégrale le long de tout contour fermé soit nulle.
| Alors cela aura lieu en particulier le long de tout cercle I' de
| centre M(x, y,, z) contenu dans le plan

xXx = x, .

Donc divy, % existe et est nulle'; il en est de méme pour

divey, V div V et d’apreés ce que nous avons vu le vecteur V

admet un rotationnel de composantes diviy V, divey) V, div(y V,
identiquement nul.

Inversement si le rotationnel est nul, la Formule de Stokes
montre que

dex—{—Qdy—l—Rdz=fm ‘
C

est nulle le long de tout eontour fermé sans points anguleux;
cette derniére restriction pouvant étre levée quand C ne présente

1 On a en effet le long de T ;
f%dl_\i = f-{fllzds
r r

n étant le vecteur unité de la normale al V, le vecteur y R (x0, ¥, 2) — z Q(xo, v, 2),
déja rencontré,
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qu'un nombre fini de points anguleux grdce & lartifice qui
consiste & arrondir ces singularités; et cela suffit pour que o
soit la différentielle d’une fonction dF.

En résumé, la condition nécessaire et suffisante pour que

-> -»
~Pdx + Qdy + Rdz = V.dM

soit une différentielle totale est que 'on ait:

-

.3 . | T e v 0
dlv(x)V = 0, dlv(y)V = 0 ; dlv(z) = 0 .

12. Conséquences du théoréme fluzx-divergence généralisé.

Pour terminer nous allons enfin indiquer quelques conséquences
intéressantes que ’on peut tirer de la généralisation donnée par
M. Bouligand du théoréme flux-divergence. Placons-nous dans le
cas du plan et soit Ozy un systéme d’axes orthogonal et normal.
Donnons-nous une fonction f(z) et considérons le vecteur:

Z f(x)

supposons qu’il admette une divergence -circulaire centrée
continue: Je dis alors que f (x) admet une dérivée continue et que
l'on a:
f'(x) = divaf(z) .
Soit en effet C le contour rectangulaire limité par les droites
Oz, £ = x,, y = a, Oy. Nous avons S étant le domaine de ce

rectangle:
fdlvxf ff(xx vds

Le long de Oz et du coté opposé & Oz, on a:

-p

y = 0

84

l:e long de la paralléle a Oy d’abscisse ‘xO:

- -> - ]
p = x.x =1

)

ét le long de Oy:
Sl : }3=_;;=—1
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