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Par suite, pour tout contour fermé ä tangente continue
sans point double C parcouru dans le sens direct:

J' P dx -j- Q dy j* divY.rfcj (7)

C s

on en tire le théorème suivant, généralisation du théorème
classique sur l'intégrale des différentielles exactes:

La condition nécessaire et suffisante pour qu'une intégrale
curviligne

j* V dx -f- Qdy
c

soit nulle le long de tout contour fermé sans point double est que la
•

divergence circulaire centrée du vecteur : xQ — yV soit identiquement

nulle dans la région du plan envisagée1.

D'après (7) cette condition est suffisante; elle est aussi
nécessaire puisque le long de tout cercle de centre M l'intégrale

J* (xQ — y P) u ds

c

étant nulle par hypothèse, il en sera de même de son quotient
par 7zp2 quel que soit p; d'où existence en chaque point d'une
divergence circulaire centrée nulle.

[9. Définition du rotationnel.

Pour définir le rotationnel, nous poserons:

diy (Y j\ u) — a rot Y (8)

—f

où u désigne un vecteur unitaire de direction quelconque, mais
fixe 2. On voit immédiatement que si les composantes de V ont
des dérivées du premier ordre par rapport à x1 y, z, le rotationnel
ainsi défini coïncide bien avec le rotationnel classique. Dans le

1 L'énoncé suppose la continuité de la tangente. On pourrait d'ailleurs aisément,
à la faveur d'un théorème de M. Lebesgue, étendre le résultat aux courbes recti-
fiables.

2 Pareillement, on pourrait unifier la définition du gradient et de la divergence et
aboutir à la notion de gradient sphérique centré en utilisant l'identité

grad w. div (fu).
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cas contraire pour justifier la définition fournie par l'équation (8)
il faut :

1° Que V A ^ ait une divergence (au sens généralisé défini
plus haut).

2° Que (8) définisse alors bien un vecteur et un seul. Examinons
le premier point: la condition énoncée sera remplie si l'intégrale:

1

4
3

•ô *P8s
/(V (9)

prise sur la sphère S de centre M et de rayon p admet une limite,
quand p tend vers zéro, continue avec M, et reste inférieure quel

que soit p à un nombre fixe À. Or, on peut écrire (9), en
désignant par m le volume de S :

— f (y A V) d* (10)
us J

s

—3*-
Alors 1° sera satisfaite si la longueur du vecteur W(/),M)

1 /» -/ (- A v)4
*p»s3

reste inférieure à A quel que soit p et M, et si W tend vers une
limite continue quand p tend vers zéro. On aura alors d'après (8),

(9) et (10):

rot V lim —- Ç (v /\ Y) da ; (11)
p=o J

S

cette relation (11) définit alors complètement le rotationnel
et la condition 2° est bien remplie.

10. Formule de Stokes.

Nous allons montrer que l'existence et la continuité du
rotationnel généralisé que nous venons de définir dans le

paragraphe précédent suffisent pour assurer l'exactitude de la

formule de Stokes:

J*V.dM J* rot Y v d<s (12)

c s

2 étant une portion de surface admettant un champ de normales


	9. Définition du rotationnel.

