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36 G. BOULIGAND ET A. ROUSSEL

La masse du fluide qui occupe Q & I'instant ¢ a pour volume une
certaine fonction du temps. Le théoréme de variation du volume
exprimé par la formule (3) nous apprend que cette fonction du
temps a pour dérivée:
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D’autre part, on a également :
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v désignant le vecteur unité de la normale extérieure en un point
de 2. D’ou le théoreme flux divergence
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fdiwdm — V.V ds . (5)
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En réalité, en conservant les mémes hypothéses sur X, on
pourrait montrer (a la base des résultats signalés sans démons-
tration au n° 5) que cette formule est valable dans des conditions
beaucoup plus générales: il suffit de supposer ’existence et la
sommabilité de div. V.

8. Application.

Il est clair que tout ce que nous venons de dire dans le cas de
I’espace a 3 dimensions s’applique, avec des modifications évi-
dentes au cas ou les vecteurs considérés appartiennent tous au
méme plan. Le jacobien sphérique centré par exemple, sera
remplacé par un jacobien circulaire centré, et nous aurons la

relation:
fdiv'v".dc -_-f'\’f.?ds (6)
S C

C étant une courbe fermée & tangente continue sans point
- . ’1 7 .
double, v la normale extérieure, dg 1’élément d’aire.

Soit alors P (z, y), Q (z, y) deux fonctions données, V le vecteur
de composantes Q et — P; il est clair que 1’on a:

[ Pdx + Qay =f'\7.3d.s .
C C




FORMULES DE GREEN ET DE STOKES 37

Par suite, pour tout contour fermé & tangente continue

-sans point double C parcouru dans le sens direct:

dex 1+ Qdy =/‘divi7.dc )
C - S

on en tire le théoréme suivant, généralisation du théoréme
classique sur Dintégrale des différentielles exactes:

La condition nécessaire et suffisante pour qu’une intégrale
curviligne |

dex + Qdy
C

soit nulle le long de tout contour fermé sans point double est que la
divergence circulaire centrée du vecteur : :?Q — _??P soit identique-
ment nulle dans la région du plan envisagéel.

D’apres (7) cette condition est suffisante; elle est aussi né-
cessaire puisque le long de tout cercle de centre M l'intégrale

f (XQ — yP).vds

C
é¢tant nulle par hypothése, il en sera de méme de son quotient
par wp? quel que soit p; d’ou existence en chaque point d’une
divergence circulaire centrée nulle.

19. Définition du rotationnel.

Pour définir le rotationnel, nous poserons:
div(VA#) = u.rot V (8)
ol u désigne un vecteur unitaire de direction quelconque, mais
fixe 2. On voit immeédiatement que si les composantes de V ont
des dérivées du premier ordre par rapport a z, ¥, z, le rotationnel
ainsi défini coincide bien avec le rotationnel classique. Dans le

1 L’énoncé suppose la continuité de la tangente. On pourrait d’ailleurs aisément,
4 la faveur d’un théoréme de M. Lebesgue, étendre le résultat aux courbes recti-
fiables. ,

2 Pareillement, on pourrait unifier la définition du gradient et de la divergence et
aboutir & la notion de gradient sphérique centré en utilisant Yidentité

— -> =>
grad @ .u.= div(Pu).



	8. Application.

