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36 G. BOULIGAND ET A. ROUSSEL

La masse du fluide qui occupe il à l'instant t a pour volume une
certaine fonction du temps. Le théorème de variation du volume
exprimé par la formule (3) nous apprend que cette fonction du

temps a pour dérivée:
dû p •*•

—— / div V rfw
dt J

ü

D'autre part, on a également :

dû Vv<*°
E

v désignant le vecteur unité de la normale extérieure en un point
de 2. D'où le théorème flux divergence

/div^ OJ fV.T de (5)

n e

En réalité, en conservant les mêmes hypothèses sur 2, on
pourrait montrer (a la base des résultats signalés sans démonstration

au n° 5) que cette formule est valable dans des conditions
beaucoup plus générales: il suffît de supposer l'existence et la
sommabilité de div. V.

8. Application.

Il est clair que tout ce que nous venons de dire dans le cas de

l'espace à 3 dimensions s'applique, avec des modifications
évidentes au cas où les vecteurs considérés appartiennent tous au
même plan. Le jacobien sphérique centré par exemple, sera
remplacé par un jacobien circulaire centré, et nous aurons la
relation :

J div V da V ds (6)

S c

C étant une courbe fermée à tangente continue sans point
double, v la normale extérieure, da l'élément d'aire.

Soit alors P (x, 2/), Q (x, y) deux fonctions données, V le vecteur
de composantes Q et — P; il est clair que l'on a:

j* P dx -{• Q dy — Ç Y v ds

C c
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Par suite, pour tout contour fermé ä tangente continue
sans point double C parcouru dans le sens direct:

J' P dx -j- Q dy j* divY.rfcj (7)

C s

on en tire le théorème suivant, généralisation du théorème
classique sur l'intégrale des différentielles exactes:

La condition nécessaire et suffisante pour qu'une intégrale
curviligne

j* V dx -f- Qdy
c

soit nulle le long de tout contour fermé sans point double est que la
•

divergence circulaire centrée du vecteur : xQ — yV soit identiquement

nulle dans la région du plan envisagée1.

D'après (7) cette condition est suffisante; elle est aussi
nécessaire puisque le long de tout cercle de centre M l'intégrale

J* (xQ — y P) u ds

c

étant nulle par hypothèse, il en sera de même de son quotient
par 7zp2 quel que soit p; d'où existence en chaque point d'une
divergence circulaire centrée nulle.

[9. Définition du rotationnel.

Pour définir le rotationnel, nous poserons:

diy (Y j\ u) — a rot Y (8)

—f

où u désigne un vecteur unitaire de direction quelconque, mais
fixe 2. On voit immédiatement que si les composantes de V ont
des dérivées du premier ordre par rapport à x1 y, z, le rotationnel
ainsi défini coïncide bien avec le rotationnel classique. Dans le

1 L'énoncé suppose la continuité de la tangente. On pourrait d'ailleurs aisément,
à la faveur d'un théorème de M. Lebesgue, étendre le résultat aux courbes recti-
fiables.

2 Pareillement, on pourrait unifier la définition du gradient et de la divergence et
aboutir à la notion de gradient sphérique centré en utilisant l'identité

grad w. div (fu).
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