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FORMULES DE GREEN ET DE STOKES 35

d’ou:

(M) = g(P) o= = g|BM)]I(M) .
N g

Le fait que la limite J (M) est valable indépendamment . de
la forme des éléments de volume nous dispense d’insister sur la
démonstration de la formule (4).

7. Le théoréme flux-divergence.

Revenons aux champs vectoriels, ou, ce qui est équivalent:
aux transformations infinitésimales. Nos hypothéses seront ici
les suivantes: |

a,) Le champ est défini et continu dans une certaine région R 1.

¢;) Soit M un point fixe intérieur & R, décrivons une sphére de
centre M, de volume ¢ et soit ¢ le flux du champ sortant de

cette sphére. Le rapport —? tend vers une limite quand‘ ¢ tend
vers zéro: cette limite peut s’appeler divergence sphérique centrée.
d,) % reste inférieur & un nombre fixe, cette limitation s’appli-

quant nécessairement a la divergence.

e;) La divergence est une fonction continue de M.

Nous avons présenté ces hypothéses en les faisant correspondre
trés exactement aux hypothéses admises dans la démonstration
de (3). Seulement ici, I’hypothese b;) disparait: elle est remplie
ipso-facto en vertu de la continuité du champ vectoriel.

L’hypothése b) consistait en effet & exprimer qu’'un volume
sphérique correspond effectivement & un volume; ’hypotheése b,)
consistera donc en ce que, notre champ étant regardé comme
un champ de vitesses, le volume du fluide contenu dans une
sphére & I'instant £ admet une dérivée par rapport a z. Or, cette
dérivée est justement le flux du champ sortant de la spheére.

Soit done le champ Vectoriel—V(M) satisfaisant aux hypotheéses
précédentes. Soit un volume Q intérieur & la région R et limité
par une ou plusieurs surfaces, possédant chacune un champ
continu de normales, et dont I’ensemble sera désigné par 3.

1 Nous verrons un peu plus loin que 'hypothése b1) qu’on déduirait de b) est remplie
ipso facto.
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La masse du fluide qui occupe Q & I'instant ¢ a pour volume une
certaine fonction du temps. Le théoréme de variation du volume
exprimé par la formule (3) nous apprend que cette fonction du
temps a pour dérivée:

iaQ  p,.

Pl fdu Vdo .

Q
D’autre part, on a également :

dO > =
-d—t-= V.VdO'
z

-) - -
v désignant le vecteur unité de la normale extérieure en un point
de 2. D’ou le théoreme flux divergence

- - -
fdiwdm — V.V ds . (5)
Q =

En réalité, en conservant les mémes hypothéses sur X, on
pourrait montrer (a la base des résultats signalés sans démons-
tration au n° 5) que cette formule est valable dans des conditions
beaucoup plus générales: il suffit de supposer ’existence et la
sommabilité de div. V.

8. Application.

Il est clair que tout ce que nous venons de dire dans le cas de
I’espace a 3 dimensions s’applique, avec des modifications évi-
dentes au cas ou les vecteurs considérés appartiennent tous au
méme plan. Le jacobien sphérique centré par exemple, sera
remplacé par un jacobien circulaire centré, et nous aurons la

relation:
fdiv'v".dc -_-f'\’f.?ds (6)
S C

C étant une courbe fermée & tangente continue sans point
- . ’1 7 .
double, v la normale extérieure, dg 1’élément d’aire.

Soit alors P (z, y), Q (z, y) deux fonctions données, V le vecteur
de composantes Q et — P; il est clair que 1’on a:

[ Pdx + Qay =f'\7.3d.s .
C C
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