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34 G. BOULIGAND ET A. ROUSSEL

monstration conduit alors & considérer l'intégrale du second
membpre de (3) comme une fonction additive et absolument
continue de ’ensemble V des points auxquels on ’étend. Dans
ces conditions, la différence:

V’~.fJ(M)de
4

est aussi une fonction additive et absolument continue, dont la
dérivée sphérique centrée est partout nulle. Le probléme consiste
a en déduire que cette fonction est nulle. Pour les éléments de la
solution voir Lebesgue, Ann. Ec. Norm. 1910, et de La Vallée-
Poussin, Intégrale de Lebesgue, fonctions d’ensembles, classes
de Baire, chap. IV. | |

6. Conséquences de la formule (3).

Reprenons nos hypotheses simplificatrices de la continuité
de J (M); on déduit qu’il y aura nécessairement dans tout

’

volume V des points ou J (M) sera égale a VV (résultat signalé

par Darboux, dans des conditions plus particuliéres, et compa-
rable a la formule des accroissements finis, dans le champ des
fonctions monotones & dérivée continue). De ce fait, il résulte
que la limite du rapport de deux volumes correspondants est
J (M) lorsque le premier de ces volumes est infiniment voisin
de M (sans plus). | o

Il n’y a alors aucune difficulté & déduire de ces résultats le
théoréeme général de variance d’une intégrale multiple:vr

Sa®rdo, = [§(BM)IM)do, (%)

v’ A%

théoréme qui d’ailleurs a une signification physique intuitive et
exprime la conservation de la masse par élément; lorsqu’on
désigne par f (M) la densité de la matiére qui existe au point M
du volume V, par g (P) la densité qui régnera apreés la déformation,
au point P correspondant de V', on aura ngcessairement :

f(M) de = g(P) de
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d’ou:

(M) = g(P) o= = g|BM)]I(M) .
N g

Le fait que la limite J (M) est valable indépendamment . de
la forme des éléments de volume nous dispense d’insister sur la
démonstration de la formule (4).

7. Le théoréme flux-divergence.

Revenons aux champs vectoriels, ou, ce qui est équivalent:
aux transformations infinitésimales. Nos hypothéses seront ici
les suivantes: |

a,) Le champ est défini et continu dans une certaine région R 1.

¢;) Soit M un point fixe intérieur & R, décrivons une sphére de
centre M, de volume ¢ et soit ¢ le flux du champ sortant de

cette sphére. Le rapport —? tend vers une limite quand‘ ¢ tend
vers zéro: cette limite peut s’appeler divergence sphérique centrée.
d,) % reste inférieur & un nombre fixe, cette limitation s’appli-

quant nécessairement a la divergence.

e;) La divergence est une fonction continue de M.

Nous avons présenté ces hypothéses en les faisant correspondre
trés exactement aux hypothéses admises dans la démonstration
de (3). Seulement ici, I’hypothese b;) disparait: elle est remplie
ipso-facto en vertu de la continuité du champ vectoriel.

L’hypothése b) consistait en effet & exprimer qu’'un volume
sphérique correspond effectivement & un volume; ’hypotheése b,)
consistera donc en ce que, notre champ étant regardé comme
un champ de vitesses, le volume du fluide contenu dans une
sphére & I'instant £ admet une dérivée par rapport a z. Or, cette
dérivée est justement le flux du champ sortant de la spheére.

Soit done le champ Vectoriel—V(M) satisfaisant aux hypotheéses
précédentes. Soit un volume Q intérieur & la région R et limité
par une ou plusieurs surfaces, possédant chacune un champ
continu de normales, et dont I’ensemble sera désigné par 3.

1 Nous verrons un peu plus loin que 'hypothése b1) qu’on déduirait de b) est remplie
ipso facto.
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