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34 G. BOULIGAND ET A. ROUSSEL

monstration conduit alors à considérer l'intégrale du second
membre de (3) comme une fonction additive et absolument
continue de l'ensemble Y des points auxquels on l'étend. Dans
ces conditions, la différence:

Y-fJ(M)<*o>m
V

est aussi une fonction additive et absolument continue, dont la
dérivée sphérique centrée est partout nulle. Le problème consiste
à en déduire que cette fonction est nulle. Pour les éléments de la
solution voir Lebesgue, Ann. Ec. Norm. 1910, et de La Vallée-
Poussin, Intégrale de Lebesgue, fonctions d'ensembles, classes

de Baire, chap. IV.

6. Conséquences delà formule {3).

Reprenons nos hypothèses simplificatrices de la continuité
de J (M); on déduit qu'il y aura nécessairement dans tout

V'volume V des points où J (M) sera égale à y (résultat signalé

par Darboux, dans des conditions plus particulières, et comparable

à la formule des accroissements finis, dans le champ des

; fonctions monotones à dérivée continue). De ce fait, il résulte

que la limite du rapport de deux volumes correspondants est
j J (M) lorsque le premier de ces volumes est infiniment voisin
j de M (sans plus).
j II n'y a alors aucune difficulté à déduire de ces résultats le
| théorème général de variance d'une intégrale multiple:

/*(P)^P /*(S(M))J(M)<J«om (4)

y v

| théorème qui d'ailleurs a une signification physique intuitive et

exprime la conservation de la masse par élément; lorsqu'on
désigne par / (M) la densité de la matière qui existe au point M
du volume V, par g (P) la densité qui régnera après la déformation,

j au point P correspondant, de V', on aura nécessairement :

\ *

f(M)dwu S(pWwp
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d'où:
du>„ _

/•(M) gW-r-1-
atoM

Le fait que la limite J (M) est valable indépendamment. de

la forme des éléments de volume nous dispense d'insister sur la
démonstration de la formule (4).

7. Le théorème flux-divergence.

Revenons aux champs vectoriels, ou, ce qui est équivalent'
aux transformations infinitésimales. Nos hypothèses seront ici
les suivantes:

af) Le champ est défini et continu dans une certaine région (K1.

q) Soit M un point fixe intérieur à di, décrivons une sphère de

centre M, de volume v et soit <p le flux du champ sortant de

cette sphère. Le rapport ^ tend vers une limite quand v tend

vers zéro: cette limite peut s'appeler divergence sphérique centrée.

dt) ^ reste inférieur à un nombre fixe, cette limitation s'appli-

quant nécessairement à la divergence.
ef) La divergence est une fonction continue de M.
Nous avons présenté ces hypothèses en les faisant correspondre

très exactement aux hypothèses admises dans la démonstration
de (3). Seulement ici, l'hypothèse bf) disparaît: elle est remplie
ipso-facto en vertu de la continuité du champ vectoriel.

L'hypothèse b) consistait en effet à exprimer qu'un volume
sphérique correspond effectivement à un volume; l'hypothèse b-f)

consistera donc en ce que, notre champ étant regardé comme
un champ de vitesses, le volume du fluide contenu dans une
sphère à l'instant t admet une dérivée par rapport à t. Or, cette
dérivée est justement le flux du champ sortant de la sphère.

Soit donc le champ vectoriel Y (M) satisfaisant aux hypothèses
précédentes. Soit un volume û intérieur à la région di et limité
par une ou plusieurs surfaces, possédant chacune un champ
continu de normales, et dont l'ensemble sera désigné par 2.

1 Nous verrons un peu plus loin que l'hypothèse 5i) qu'on déduirait de b) est remplie
ipso facto.
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