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FORMULES DE GREEN ET DE STOKES 33

d'ensembles de sphères dont les centres formeront des ensembles

désignés par
#1 é?2

L'ensemble eu contient tous les e{ d'indices i < k. L'ensomble

e^ formé de tous les points des eh est dénombrable et partout
dense.

Soit maintenant la fonction J&(M) définie dans les sphères de

E& de la manière suivante : dans chaque sphère dont le volume est

o, nous lui attribuons la valeur constante ~ Cette fonction

est partout définie dans V, sauf sur un ensemble de mesure
nulle où nous pouvons la prendre égale à J(M). L'intégrale de

la fonction ainsi construite a évidemment pour valeur le volume

V', quelque soit k. Donc, lorsque k croît indéfiniment, elle tend
vers une limite égale à V'. Or, en vertu de la continuité de J (M),
les fonctions J&(M) qui sont bornées d'après g?) tendent vers
J(M) dans tout V lorsque k croît indéfiniment. La formule (3)

apparaît alors comme une conséquence immédiate de ce théorème

classique de Lebesgue: Vintégrale de la limite dans le champ
des fonctions bornées est égale à la limite de V intégrale.

Notons que le raisonnement présenté sous cette forme ne

peut se passer de l'hypothèse de la continuité de J (M) :

l'ensemble sur lequel nous savons d'une manière immédiate (c'est-à-
dire sans invoquer la continuité) que J&(M) tend vers J(M) se

compose de l'ensemble dénombrable e^ et d'une suite dénombrable

d'ensembles de mesure nulle omis à chaque application
de ce lemme. La limite n'est donc assurée sans la continuité que
sur un ensemble de mesure nulle. Mais, si l'on fait l'hypothèse de

la continuité, entraînant l'uniforme continuité, on voit aisément

que cette limite est partout assurée.

5. — Conditions de validité de la formule (3).

Le champ de validité de la formule (3) est en réalité beaucoup
plus large que le champ défini par les hypothèses a, è, c, d, e.

Cette formule subsiste en réalité dans les conditions les plus
générales pour lesquelles le second membre a un sens, c'est-à-
dire lorsque la fonction J (M) existe et est sommable. La dé-
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34 G. BOULIGAND ET A. ROUSSEL

monstration conduit alors à considérer l'intégrale du second
membre de (3) comme une fonction additive et absolument
continue de l'ensemble Y des points auxquels on l'étend. Dans
ces conditions, la différence:

Y-fJ(M)<*o>m
V

est aussi une fonction additive et absolument continue, dont la
dérivée sphérique centrée est partout nulle. Le problème consiste
à en déduire que cette fonction est nulle. Pour les éléments de la
solution voir Lebesgue, Ann. Ec. Norm. 1910, et de La Vallée-
Poussin, Intégrale de Lebesgue, fonctions d'ensembles, classes

de Baire, chap. IV.

6. Conséquences delà formule {3).

Reprenons nos hypothèses simplificatrices de la continuité
de J (M); on déduit qu'il y aura nécessairement dans tout

V'volume V des points où J (M) sera égale à y (résultat signalé

par Darboux, dans des conditions plus particulières, et comparable

à la formule des accroissements finis, dans le champ des

; fonctions monotones à dérivée continue). De ce fait, il résulte

que la limite du rapport de deux volumes correspondants est
j J (M) lorsque le premier de ces volumes est infiniment voisin
j de M (sans plus).
j II n'y a alors aucune difficulté à déduire de ces résultats le
| théorème général de variance d'une intégrale multiple:

/*(P)^P /*(S(M))J(M)<J«om (4)

y v

| théorème qui d'ailleurs a une signification physique intuitive et

exprime la conservation de la masse par élément; lorsqu'on
désigne par / (M) la densité de la matière qui existe au point M
du volume V, par g (P) la densité qui régnera après la déformation,

j au point P correspondant, de V', on aura nécessairement :

\ *

f(M)dwu S(pWwp
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