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FORMULES DE GREEN ET DE STOKES 31

Le moment est revenu de préciser nos hypothéses sur la
transformation .

a) A une région R, de &y, elle fait correspondre biunivoque-
ment et continument une région R, de &,.

b) A toute sphére intérieure & R, correspond effectivement un
volume intérieur & R,. Soit ¢ le volume de la spheére, ¢’ son
correspondant.

¢) Soit un point fize intérieur & (Ry; prenons une spheére

infiniment petite de centre M; alors le rapport %tend vers une

limite déterminée J (M).
d) Lorsque M décrit une région quelconque, strictement inté-
rieure & Ry, la famille des fonctions L— de M (dépendant du

parameétre ¢) est bornée dans son ensemble, cette borne s’appli-
quant nécessairement a J (M)..

e) J (M) est continue & l'intérieur de (Ry.

Nous appellerons J (M) le jacobien sphérique centré, locution
proposée par M. Wilkosz et qui a l’avantage de rappeler les
conditions particuliéres de la définition, favorables dans ceriaines
recherches, par exemple pour lobtention de I’harmonicité
moyennant des hypotheses simples et bien conformes au mode
d’invariance du laplacien ! qui sera défini comme une diver-
gence sphérique centrée (n° 7).

4. — Valeur du volume aprés une déformation finte.

Dans tout ce qui suit les intégrations ont lieu au sens de
M. Lebesgue. Des hypotheses ¢) et d) nous déduisons d’abord ce
résultat : & tout volume (intérieur & R,) du premier espace
correspond un volume du second.

Il suffit pour cela d’établir que le transformé d’un ensemble de
mesure nulle est aussi de mesure nulle. Servons-nous d’un

* Dans d’autres questions, il pourra étre plus avantageux de faire usage d’un jacobien
sphérique non centré, ou encore d’un jacobien cubique (locutions qui se comprennent
d’elles-mémes). Notons que pour le théoreme de variance des intégrales multiples, qui
va nous occuper, et qui appartient en réalité & la géométrie linéaire, il est indiqué
d’utiliser une forme de jacobien obtenue en substituant aux spheres de centre M des
volumes v tels que la figure (M, v) reste homothétique d’une figure fixe. Il n’y a d’ailleurs
qu’une simple transposition & faire dans la démonstration qui va étre donnée, en rem-
placant les spheéres de centre M par les volumes v soumis a Phypothese précédente.
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réseau binaire progressif. Il nous permettra d’enfermer I’ensemble
dans une infinité de cubes dont la somme des volumes est
arbitrairement petite. On peut énoncer la méme propriété pour
la somme des volumes des sphéres circonscrites a ces cubes;
or, de I’hypothése d) nous tirons une limite supérieure pour la
somme des volumes transformés des cubes, égale au produit
d’un nombre fixe par la somme des volumes des sphéres précé-
dentes. Le résultat est donc établi. En méme temps, il est
clair qu’a tout nombre positif ¢, il est possible de faire corres-
pondre un nombre positif ¢ tel que I'inégalité:

mes. d'un ens. de Ry < 8

entraine:
mes, ens. transf. < ¢

c’est ce qu'on exprime en disant que la transformation G est
absolument continue.

Il s’agit maintenant de prouver qu’a un volume quelconque
V, complétement intérieur & R, correspond un volume V'
(nécessairement intérieur & (R,;) donné par la formule:

Vo= l/"J(.\‘l)de . (3)

Pour cela, nous tablerons sur la possibilité de trouver a l'in-
térieur de chaque volume un systéme d’une infinité dénom-
brable de sphéres, mutuellement extérieures, et dont ’ablation ne
laisserait subsister qu’un ensemble de mesure nulle. Admettons
cette possibilité, qu’il suffirait d’établir pour un cube, le volume
pouvant étre obtenu au moyen d’une infinité dénombrable de
cubes d’un réseau indéfiniment progressif.

En vertu de ce lemme, nous pourrons trouver dans Q un
premier ensemble E de spheéres, conformément aux conditions
indiquées. De E; passons & un ensemble analogue E,, en prenant
chaque spheére de E,, enlevant de celle-ci une sphére concentrique
et de rayon moitié, et appliquant le lemme au volume restant.
En répétant indéfiniment ce procédé, nous aurons une suite:

2

E,, By, ... By, .
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d’ensembles de sphéres dont les centres formerbnt des ensembles

désignés par

e €y o-- €4

1

L’ensemble e, contient tous les ¢; d’indices ¢ < k. L’ensemble
e,, formé de tous les points des e, est dénombrable et partout
dense.

Soit maintenant la fonction Jx(M) définie dans les sphéres de
Ep de la maniére suivante: dans chaque sphére ’dont le volume est

. . ' .
¢, nous lui attribuons la valeur constante — . Cette fonction

est partout définie dans V, sauf sur un ensemble de mesure
nulle ot nous pouvons la prendre égale & J(M). L’intégrale de
la fonction ainsi construite a évidemment pour valeur le volume
V', quelque soit k. Done, lorsque % croit indéfiniment, elle tend
vers une limite égale & V'. Or, en vertu de la continuité de J (M),
les fonctions J, (M) qui sont bornées d’apres d) tendent vers
J (M) dans tout V lorsque k croit indéfiniment. La formule (3)
apparait alors comme une conséquence immédiate de ce théo-
réme classique de Lebesgue: l'intégrale de la limite dans le champ
des fonctions bornées est égale a la limite de U'intégrale.

Notons que le raisonnement présenté sous cette forme ne
peut se passer de I’hypotheése de la continuité de J(M): I'en-
semble sur lequel nous savons d’'une maniere immeédiate (c’est-a-
dire sans invoquer la continuité) que Jr(M) tend vers J(M) se
compose de ’ensemble dénombrable e, et d’une suite dénom-
brable d’ensembles de mesure nulle omis & chaque application
de ce lemme. La limite n’est donc assurée sans la continuité que
sur un ensemble de mesure nulle. Mais, si ’on fait ’hypothése de
la continuité, entrainant ’uniforme continuité, on voit aisément
que cette limite est partout assurée.

5. — Conditions de validité de la formule (3).

Le champ de validité de la formule (3) est en réalité beaucoup
plus large que le champ défini par les hypothéses a, b, ¢, d, e.
Cette formule subsiste en réalité dans les conditions les plus
générales pour lesquelles le second membre a un sens, ¢’est-a-
dire lorsque la fonction J (M) existe et est sommable. La dé-
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