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théorème de M. Julia, disant que chaque fonction entière possède-
au moins un angle infiniment petit (nommé une droite de Julia) avec
le point 0 comme centre, dans lequel la fonction acquiert chaque
valeur, sauf peut-être une valeur exceptionnelle, une infinité de fois.
M. Ostrowski a démontré dans un mémoire connu que ce théorème
reste encore vrai pour une fonction méromorphe, si l'on exclut une
classe très particulière et bien déterminée: les lonctions exceptionnelles,

et si l'on admet deux valeurs exceptionnelles. Le conférencier
a démontré qu'on peut préciser les théorèmes de MM. Julia et
Ostrowski dans la manière suivante: Chaque fonction méromorphe,
excepté une classe très particulière et bien déterminée, les fonctions
quasi-exceptionnelles, possède une infinité de cercles dont le centre
converge vers l'infini et vu du point 0 sous un angle infiniment
petit, dans lesquels la fonction acquiert chaque valeur a, sauf
peut-être deux valeurs exceptionnelles, un nombre illimité de fois.
Enfin le conférencier parle de l'analogie entre la distribution des

points singuliers d'une série de Taylor sur le cercle de convergence
avec la distribution des droites de Julia d'une fonction entière. Dan&
un mémoire de M. Pölya, qui va paraître prochainement dans la
Mathematische Zeitschrift, ces questions sont discutées d'une manière
approfondie.

II. —- Réunion de Lausanne, 31 août 1928.

La Société mathématique suisse a tenu sa 18me assemblée ordinaire
annuelle à Lausanne, le 31 août 1928, sous la présidence de M. le
professeur G. Juvet, vice-président, en même temps que la 109me
session annuelle de la Société helvétique des sciences naturelles.

Précédant de deux jours seulement l'ouverture du Congrès
international des mathématiciens (Bologne, 3-10 septembre), la séance
de Lausanne ne devait réunir qu'une faible participation. Le
programme comprenait six communications dont quatre furent effectivement

présentées :

1. — L. Kollros (Zurich). — Généralisations de théorèmes de

Steiner et de Clifford.
I. 4 droites d'un plan, prises 3 à 3, forment 4 triangles tels que les

cercles circonscrits passent par un même point F.
II. Les centres de ces 4 cercles sont, avec F, sur un cinquième

cercle y (Steiner, Werke I, p. 223).
On peut démontrer et généraliser ces 2 théorèmes de plusieurs

manières:
1. Le lieu des foyers des paraboles touchant 3 droites est le cercle

circonscrit au triangle; les 4 cercles se coupent donc au foyer F de
la parabole tangente aux 4 droites.

A l'aide des paraboles pn de ne classe touchant (n—1) fois la
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-droite à l'infini, Clifford (Math. Papers, p. 38) a démontré que 5

droites, prises 4 à 4, déterminent 5 paraboles telles que les 5 foyers
soient sur un cercle; 6 droites, prises 5 à 5, déterminent 6 cercles

passant par un même point, etc.; à (2 n— 1) droites correspond un
cercle et à 2 n droites un point Fn commun à 2 n cercles. En effet,

par chaque point cyclique, on ne peut mener qu'une seule tangente
à pn\ cette courbe n'a donc qu'un foyer F^; elle est déterminée par
"2n tangentes, car son équation tangentielle, n'ayant que les termes
des degrés n et (n—1), dépend de façon homogène de (2n + 1)

paramètres. Il y a une simple infinité de courbes pn tangentes à

(2n—1) droites; à chaque tangente issue d'un point cyclique I
correspond une seule pn du faisceau et par suite une seule tangente
issue de l'autre point cyclique K; ces paires de tangentes isotropes se

•ooupent sur un cercle, lieu du foyer des pn du faisceau; 2n droites,
prises (2n—1) à (2n—1), donnent 2n cercles passant par le foyer
Fn de la pn tangente aux 2n droites; parmi les pn tangentes à (2n—1)
droites se trouvent les (2n—1) courbes constituées par le point à

l'infini de l'une des droites et la pn-1 tangente aux (2n — 2) autres
droites; on a ainsi (2n— 1) points Fn_! sur un cercle.

2. Les cubiques planes passant par les 6 points d'intersection des
4 droites et par les points cycliques I, K ont encore un neuvième point
commun 1 F ; 4 cubiques dégénèrent en une des droites et le cercle
circonscrit au triangle des 3 autres; les 4 cercles passent donc par F.
Les tangentes en I et K à toutes les cubiques forment 2 faisceaux
projectifs; ils engendrent le cercle y (théor. II); soit 04 son centre;
à 5 droites, prises 4 à 4, correspondent 5 points 04; ils sont sur un
cercle de centre 05; 6 droites, prises 5 à 5, donnent 6 points 05 d'un
nouveau cercle, etc. (Pesci, Per. di mat., 1891). En effet, considérons
les courbes hn du ne ordre, dont les asymptotes sont parallèles aux
côtés d'un polygone régulier. En coordonnées isotropes, l'équation
d'une hn n'a pas d'autres termes du ne degré que axn et byn\ il en
résulte que les premières polaires des points à l'infini par rapport
à hn sont des hn-\ et que la droite polaire d'un point cyclique passe
par l'autre; si l'on appelle centre On de hn le point d'intersection de
ces 2 droites isotropes, on voit que le lieu des centres On_i des
premières polaires hn_i des points à l'infini est un cercle de centre On.
Dire qu'une courbe du ne degré est une hn équivaut à (n — 1) conditions

linéaires; si l'on a 3 droites dont les équations sont dx 0,
d2 0, d3 0, il n'y aura qu'une seule h3 dans le réseau de cubiques:
7.±dl -f- \^d\ + ~ 0; son centre 03 sera celui du cercle circonscrit

au triangle des 3 droites, puisque ce cercle est le lieu des centres
des hyperboles équilatères conjuguées au triangle et que ces hyperboles

1 Si l'on a n points et (n + 2) droites dans un plan, les courbes d'ordre (n + 1)
passant par ces n points et par les points d'intersection des droites ont encore

n (n 1}
o

points communs.
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sont les premières polaires â2 des points à l'infini par rapport à h3.
Si nous considérons 4 droites, il n'y aura, dans le système linéaire :

*kxd\ + 0, qu'une seule A4; son centre 04 est
celui du cercle y contenant les points 03 des 4 triangles; 5 droites
donnent 5 points 04 sur un cercle dont le centre 05 est celui de l'unique
h5 contenue dans le système linéaire: ltd\+ + 0, et
ainsi de suite.

3. Si l'on projette un quadrilatère complet stéréographiquement
sur une sphère, les plans qui correspondent aux 4 triangles passent
par un même point F de la sphère. Soient, en effet, 919^394 ces
4 plans et 7^712^3714 ceux qui projettent les 4 côtés du quadrilatère,
toutes les quadriques passant par les projections des 6 sommets et.

par le centre de projection P se coupent encore en un huitième point;
la sphère et les paires de plans (7t292) (^393) et (^494)
appartiennent à ce réseau de quadriques; donc 9x929394 la sphère
se coupent au huitième point F. Analytiquement, on est conduit à
un déterminant symétrique gauche et l'on voit qu'il existe un théorème

analogue dans tout espace de dimension impaire; une projection
stéréographique donne la généralisation du théorème I dans les.

espaces d'un nombre pair de dimensions 1. Par contre, les sphères
circonscrites aux 5 tétraèdres déterminés par 5 plans de l'espace à
3 dimensions, pris 4 à 4, ne passent pas par un même point.

Dans un espace à 5 dimensions £5 par exemple, considérons 6

hyperplans: 7^ t:6 passant par un même point P; 4 d'entre
eux se coupent suivant une droite; cinq tt5, pris 4 à 4,
donneront lieu à 5 de ces droites; une hyperquadrique par P les

coupe en 5 points qui déterminent un hyperplan cp6; il y en aura,
de même, 5 autres cp1 .95; ces 6 hyperplans 9$ se coupent en
un même point F. Ce résultat est susceptible d'une interprétation en
géométrie réglée de l'£3; si l'on prend les 6 coordonnées de Plücker
d'une droite comme coordonnées homogènes d'un point de e5, la
relation quadratique qui les lie est représentée par une hyperquadrique
dont les points correspondent aux droites de l'espace; si on la coupe
par un hyperplan, les 003 points d'intersection seront les images des
droites d'un complexe linéaire. On voit donc que 6 complexes linéaires.
7Tx tt6 ayant une droite commune p déterminent 6 autres,
complexes linéaires 94 9g ayant aussi une droite commune /.
Si les complexes linéaires sont tous spéciaux (c'est-à-dire formés parles

transversales d'une droite) on a le théorème du double-sept:
Soient p1 p6 six droites de Y e3 ayant une même transversale

p ; 4 d'entre elles ont encore une 2e transversale ; cinq, px p5

par exemple, prises 4 à 4, donnent 5 de ces transversales qui, d'après.

1 Mais le théorème II ne se généralise pas et il n'existe pas, pour les hypersphères„
de chaînes analogues à celles de Clifford et de Pesci.
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le théorème du double-six, coupent une même droite /6. Nous aurons,,
de même, 5 autres droites fx /5. Les 6 droites f\ auront aussi

une transversale commune /.
4. Des plans quelconques menés par 4 droites d'un plan n forment

un tétraèdre ABCD; la cubique gauche c3 passant par ABCD et les

points cycliques I, K de tt coupent ce plan tt en un 3e point F; c3

projetée successivement à partir de A, B, C et D sur rc donnent les
4 cercles se coupant en F; soient a, b, c, d leurs centres, i et k les

tangentes à c3 en I, K; les asymptotes al, aK du 1er cercle sont les

projections de i, k à partir de A; la droite Aa coupe donc i et k; il
en est de même de B£, Ce, Dd] ces 4 droites sont des génératrices de la
quadrique q contenant c3, i et k ; q coupe donc tt suivant un cercle y
passant par abcdF.

Grace vient de généraliser (Camb. Phil. Proc. 1928) la chaîne de
Pesci de la manière suivante: Si 04 est l'intersection des plans
tangents à q en I et K, 5 plans, pris 4 à 4, donnent 5 droites 04 qui sont
sur une quadrique q5 passant par I et K ; les plans tangents à qb en
I et K se coupant en 05, 6 plans, pris 5 à 5, donnent 6 droites Og
situées sur une quadrique q6 par I et K, etc.

Meyer et Röhn ont démontré (Leipziger Ber. 1913, p. 329-346) le
théorème suivant: Etant donnés, dans l'espace à 3 dimensions, 5 plans-
quelconques et 2 points I, K, les 5 cubiques gauches passant par I, K
et respectivement par les 4 sommets de chaque tétraèdre du pentaèdre
donné, passent encore par 2 points F et G. Pour le prouver, menons
un e4 par l'espace à 3 dimensions de notre figure ; considérons, dans
cet e4, 5 e3 quelconques menés par les 5 plans donnés; ces 5 e3
forment un simplet de e4; par ses 5 sommets ABCDE et par I, K il
ne passe qu'une seule c4 unicursale de s4; elle coupe notre espace à
3 dimensions en I,K et 2 autres points F, G. En projetant cette c4
successivement à partir de A, B, G, D et E sur notre *3, on aura
5 cubiques gauches se coupant en F et G.

On démontre de même le théorème général: Etant donnés dans
un en: (n + 2) hyperplans £n_! et 2 points I, K, les (n + 2) courbes
unicursales d'ordre n, passant par I, K et les (n + 1) sommets des
simplets obtenus en supprimant successivement chacun des hyper-
plans, ont encore (n — 1) autres points communs.

White (Camb. Phil. Proc., 1925) a montré que chacun de ces
théorèmes est le point de départ d'une chaîne analogue à celle de Clifford.
Dans l'c3, par exemple, nous savons que 2 points I, K et 5 plans,
pris 4 à 4, déterminent 5 c3 ayant encore 2 autres points communs;
6 plans donnent 6 groupes de 2 points qui sont sur une courbe du
5e ordre cB passant 2 fois par I et K; 7 plans déterminent 7 c5 ayant
3 points communs; 8 plans donnent 8 groupes de 3 points sur une-
c7 passant 3 fois par I et K; 9 plans donnent 9 c7 ayant 4 points-
communs, etc.

Si l'on a des droites dans un plan et 3 points I, K, L dans l'espace,
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3 droites déterminent une c3 par I, K, L et les sommets du triangle;
4 droites donnent 4 c3 ayant un point commun F4; 5 droites donnent
5 points F4 situés sur une c3 par I, K, L; 6 droites donnent 6 c3 passant
par un point F6, etc.

Il y a des théorèmes analogues dans un sn, mais leur énoncé se

complique, comme celui de White, quand n devient plus grand.

2. — Mlle L. Sarasin (Zurich). — Sur les substitutions et les groupes
de quaternions. — L'étude suivante se base sur un système de nombres

hypercomplexes, les quaternions d'Hamilton. Si l'on appelle 2 le

quaternion variable, 2 son conjugué, l'équation d'une hypersphère
prend la forme:

Azz + Bz + zB + C 0 ou A et G sont des constantes réelles,
B un quaternion.

On établit toutes les substitutions linéaires rationnelles de quaternions

qui transforment en lui-même l'espace à 4 dimensions, de telle
sorte qu'à l'ensemble des sphères corresponde de nouveau l'ensemble
des sphères. Ces substitutions doivent être uniformes et l'existence
des inverses également uniformes est demandée.

Pour ces substitutions, on trouve les formes suivantes:

u< — azb (1) te O)

d- z c (2) ti' (az -j- b) (cz + d)~* 0)

On obtient des substitutions plus spéciales, qui transforment en
elle-même l'hypersphère unité en soumettant les coefficients aux
conditions suivantes:

aa bb 1 I ; c — 0 (2) ; — ba de — 0 (A)

ainsi que
ac — bd 0

La forme 3 remplit déjà les conditions requises.
Si l'on décompose les équations 4, il en résulte huit conditions

pour la substitution générale.
A l'aide des substitutions obtenues et d'une fonction de distance

établie par M. Carathéodory on peut définir une métrique sur l'hypersphère.

Par une représentation métrique d'un domaine à 4 dimensions
sur un autre, nous entendons une représentation uniforme et continue
qui conserve les longueurs mesurées par la fonction de distance des
courbes correspondantes. Cela revient à dire que la fonction de distance
est un invariant par rapport aux représentations métriques. On peut
établir toutes les représentations métriques et démontrer le théorème
suivant: on obtient toutes les représentations métriques de l'hyper-
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sphère sur elle-même par des substitutions linéaires rationnelles et

par symétrie par rapport à un espace à 3 dimensions.

On cherche ensuite les groupes les plus généraux ayant la sphère

unité comme sphère limite (Haupt oder Grenzkugel). Ils peuvent se

mettre sous la forme:

su's"1 [(# — isc -f- (b — i?>d) is) z -j- h — i3d -}- (a i3 c) i3]

[(— isa -j- c -j- (d — /3 b)) i3z — i?> b -f d + (c ha) 73]

S (z -\- i3). (i3z + i)"1 nous donne la représentation de l'hyper-
sphère sur l'espace à trois dimensions, w — (az + &). (cz + d)~1 transforme

l'espace à trois dimensions en lui-même, s~{ le retransforme en

l'hypersphère. Les groupes de la. forme w les plus généraux qui se

transforment par 5 en groupes qui ont la sphère unité comme sphère

limite sont:
1. Les groupes abcd réels, ad — bc 1.

2. Les groupes abcd complexes, ad — bc 1. Ce groupe a six
paramètres. Oii peut encore en former un, ayant sept paramètres. Les

coefficients ont alors la forme suivante:

a : a0 + ii + a2i2 ; b : bQ -j- /*0 (a1i1 -f- <?2 i2)

c : c1 -j- r1 (rtj q -j- a2q) \ d : dQ -j- r2 (öq q -j- ci2 /2)

et doivent remplir les conditions suivantes:

- 72«0 + dO — 7i hO — 70C0 0

<*0d0 r2^l ''2^2 ^0CQ Vl«l 7V*1 «2 f •

Ce dernier groupe contient toutes les transformations par lesquelles
un plan quelconque passant par l'axe réel se correspond à lui-même,
tandis que le groupe complexe ne contient que les transformations
qui transforment le plan de Gauss en lui-même.

3. —- R. Wavre (Genève). — Sur les propositions indémontrables. —
Dans quelques leçons consacrées à la logique mathématique, je suis
revenu sur la question des propositions indémontrables qui fit l'objet
d'une discussion entre M. Paul Lévy et moi-même1. Il m'a paru
Intéressant d'approfondir cet important sujet en précisant le sens
du mot « démontrable ». Voici brièvement mes conclusions.

Soit C un corps d'axiomes mathématiques et logiques. Le mot
démontrable signifiera dans tout ce qui suit déduisible des axiomes
mathématiques de C au moyen des axiomes logiques de ce corps.

i Voir Borel, Leçons sur la Théorie des fonctions, 3me éd., 1928, p. 257-290.

L'Enseignement mathém., 27e année; 1928. 21
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Cette déduction ne peut se faire que par des opérations dont les
axiomes logiques énoncent précisément la légitimité. Parmi ces
derniers axiomes se trouvent, je le suppose, le principe formel de contradiction

et celui du tiers exclu.
Les propositions énoncées par les axiomes ainsi que toutes les

propositions démontrables seront dites vraies, les propositions dont
la fausseté est démontrable seront dites fausses, mais, en dehors de
ces deux cas, une proposition parfaitement claire devra néanmoins
être vraie ou fausse, en vertu du principe formel du tiers exclu,
quand bien même sa vérité bu sa fausseté ne serait pas démontrable.

Comme M. Lévy le remarquait: on peut ignorer si une proposition
A est vraie, mais malgré cette ignorance, on peut établir que la
proposition A serait démontrable si elle était vraie, ou encore, que
sa fausseté serait démontrable si cette proposition A était fausse.

Dressons alors le tableau suivant qui épuise toutes les éventualités:

j | Si A est vraie sa vérité est démontrable.
I Si A est fausse sa fausseté est démontrable.

jj | Si A est vraie sa vérité est démontrable.
1 Si A est fausse sa fausseté n'est pas démontrable.

III I Si A est vraie sa vérité n'est pas démontrable.
1 Si A est fausse sa fausseté est démontrable.

jy f Si A est vraie sa vérité n'est pas démontrable.
1 Si A est fausse sa fausseté n'est pas démontrable.

Maintenant, dans quel cas la question suivante: La proposition A
est-elle vraie ou fausse pourra-t-elle être tranchée.

Cette question pourrait être tranchée dans l'éventualité I que A
soit vraie ou fausse, dans II si A est vraie, dans III si A est fausse;
elle ne pourrait pas être tranchée dans II si A est fausse, dans III
si A est vraie et enfin, dans IV que A soit vraie ou fausse; c'est évident.

Mais voici une seconde question plus délicate:
Peut-on démontrer que la question de savoir si la proposition A est

vraie ou fausse est un problème insoluble
Dans l'éventualité I, une telle preuve est évidemment impossible.

Dans II, une telle preuve est encore impossible, car elle démontrerait
que A est fausse et le problème serait résolu; c'est contradictoire.
Dans III, il en est de même m échangeant les valeurs vraie et fausse.

On ne peut espérer prouver que le problème est insoluble que dans
la circonstance IV.

Il faut donc démontrer que l'on se trouve dans cette dernière
circonstance IV pour prouver que le problème est insoluble. D'autre
part, il suffit de le démontrer, puisque l'on est certain que dans IV
le problème est insoluble.

Et comment prouver que l'on se trouve dans ce dernier cas Il
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faut démontrer que la proposition A peut être affirmée vraie et également

affirmée fausse, sans que l'on rencontre de contradiction avec
les axiomes.

Cette condition est également suffisante.
Cela reviendrait à établir l'indépendance de A à l'égard du corps C

d'axiomes. C'est d'ailleurs ainsi que l'on prouve l'indépendance
entre eux des axiomes d'un corps donné. Pour employer une image,
appelons domaine d'action d'un corps d'axiomes l'ensemble des

propositions déduisibles à partir de ce corps. Dans le dernier cas, A
ainsi que sa contradictoire non A sont en dehors du domaine d'action
du corps C. En fait, dans la circonstance IV, la proposition A, de même
que sa contradictoire non A, pourrait être adjointe au corps C, ce

qui constituerait un nouveau corps C'. Ce dernier serait exempt de

contradiction, si C l'est, et formé d'axiomes indépendants, si les
axiomes de C le sont.

Inversement, si l'on retranche d'un corps d'axiomes indépendants
un axiome mathématique, ce dernier est dans la circonstance IV
vis-à-vis du corps des axiomes restants.

Il en est ainsi du Postulatum d'Euclide à l'égard des autres axiomes
des « Eléments », puisque l'on sait qu'on peut l'admettre ou le rejeter
sans que cela implique contradiction.

Avec les axiomes implicitement admis par la science classique, la
proposition appelée « grand théorème de Fermât » peut donner lieu
à la circonstance I ou à la circonstance III, on ne sait pas actuellement
à laquelle, mais il ne peut donner lieu à I ou IV, puisque s'il est faux,
c'est sûrement vérifiable, donc démontrable. La proposition: la
constante d'Euler est algébrique, pourrait donner lieu à l'une des
circonstances I, II, III, IV, sans que l'on sache actuellement à laquelle;
ces deux dernières remarques sont la traduction, d'après notre tableau,
des ingénieuses distinctions de M. Paul Lévy.

Je ne vois pas, pour ma part, de contradiction à priori, à vouloir
démontrer la proposition suivante: Si le théorème de Fermât est
vrai, il est indémontrable. En d'autres termes, je ne vois pas de
contradiction à ce que l'on puisse, relativement à une proposition
quelconque, dire dans quelle circonstance I, II, III, IV, elle se trouve.
Il est clair qu'on diminuera les chances de se trouver dans l'une des
circonstances II, III, IV, en augmentant le nombre des axiomes et
par là même leur domaine d'action. On augmentera ces chances en
restreignant le corps d'axiomes.

Et pour affirmer que tout problème arithmétique (par exemple, le
problème que pose le grand théorème de Fermât) peut être résolu, il
faut prouver que le corps des axiomes arithmético-logiques est
suffisamment complet. Enfin, disons encore que pour nous qui rejetons
le principe du tiers exclu, le vrai se confond avec la vérité démontrable,
et le faux avec la fausseté démontrable.



324 SOCIÉTÉ MATHÉMATIQUE SUISSE

4. —- Gustave Dumas (Lausanne). — Sur les équations de la forme

kxaybzc + B 0

Cette équation rentre dans la catégorie de celles dont le polyèdre
se réduit à une simple droite. Il en résulte que sa résolution s'obtient
par la construction d'un tableau:

à éléments entiers et de déterminant égal à ± 1, si, comme on l'admet
ici, pour simplifier, les entiers a, à, c sont sans diviseur commun.

En appelant A' le mineur de a' dans le tableau, B' celui de b', etc.,
on a alors, en admettant pour simplifier l'écriture que dans (1),
A — B«l,

comme solution paramétrique de (1). Il existe une infinité de solutions
telles que (3), car le tableau (2) peut s'obtenir d'une infinité de façons.

Pour l'équation

on retrouve facilement les trois solutions à caractère holomorphe
considérées déjà par H. W. E. Jung (Journal de Crelle, t. 133).

Les procédés de résolution employés ci-dessus rentrent, comme cas
particuliers, dans la méthode qu'utilise l'auteur de la communication
pour la résolution des singularités des surfaces algébriques.

-5 — xzy — 0
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