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SOCIETE MATHEMATIQUE SUISSE

Conférences et communications.

1. — Réunion de Berne, 20 mat 1928.

Dans sa séance extraordinaire du printemps, tenue & Berne le
20 mai 1928, la Société Mathématique Suisse a constitué comme suit
son comité pour les années 1928 et 1929: M. S. Bavs, professeur a
'Université de Fribourg, président; M. G. Juver, professeur a4 I'Uni-
versité de Neuchatel, vice-président; M. W. SAXER, professeur &
I’Ecole Polytechnique Fédérale, secrétaire-trésorier.

La Société a approuvé les conclusions du rapport de la commission
chargée d’examiner la création d’un périodique destiné a grouper
plus  particuliérement la production -mathématique suisse. Cette
nouvelle revue aura pour titre Commentarii Matematici Helvetict ;
2lle sera éditée par la Maison Orell Fiissli et Cie & Zurich. Chaque
volume comprendra quatre fascicules d’environ 5 feuilles (prix de
librairie: 25 francs). Le bureau du comité de rédaction est composé
de MM. A. SpEiskr, président, R. FUueTER, secrétaire-général, et
G. Juver, secrétaire-adjoint.

Sur la proposition de la Commission du périodique, la Société a
décidé en outre de créer un Fonds pour l'avancement des Sciences
mathématiques en Suisse. Elle espére pouvoir réunir le capital néces-
saire permettant d’accorder des allocations pour des publications
mathématiques et plus particuliérement pour les Commentarii. Dés
que les revenus le permettront, elle envisagera la création de bourses
d’études et de prix de mathématiques.

La seconde partie de la séance a été consacrée a une conférence
de M. le professeur SAXER, intitulée: Les familles normales et quast-
normales de fonctions analytiques dans le théorie des fonctions méro-
morphes. — Le conférencier donne un résumé des résultats récemment
trouvés en appliquant la théorie des familles normales et quasi-
normales & la théorie des fonctions méromorphes!. Il s’agit du

1 Voir: G. JuLia, Lecons sur les fonctions uniformes 4 point singulier essentiel
isolé. Collection Borel, Paris 1924.

P. MownTEL, Lecons sur les familles normales de fonctions analytiques et leurs
applications. Collection Borel, Paris 1927.

A. OsTrowski, Ueber Folgen analytischer Funktionen. Math. Zeitschrijt, Bd. 24,
1925, p. 231.

W. Saxer, Ueber quasi-normale Funktionenscharen und eine Verschirfung des
Picard’schen Satzes. Math. Annalen, Bd. 99, 1928, p. 707.
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théoréeme de M. Julia, disant que chaque fonction entiére posséde
au moins un angle infiniment petit (nommé une droite de Julia) avec
le point O comme centre, dans lequel la fonction acquiert chaque-
valeur, sauf peut-étre une valeur exceptionnelle, une infinité de fois.
M. Ostrowski a démontré dans un mémoire connu que ce théoréme
reste encore vrai pour une fonction méromorphe, si on exclut une
classe tres particuliére ot bien déterminée: les fonctions exception-
nelles, et si I’on admet deux valeurs exceptionnelles. L.e conférencier-
a démontré qu’'on peut préciser les théorémes de MM. Julia et
Ostrowski dans la maniére suivante: Chaque fonction méromorphe,
excepté une classe trés particuliére et bien déterminée, les fonctions
quasi-exceptionnelles, posséde une infinité de cercles dont le centre
converge vers l'infini et vu du point O sous un angle infiniment
petit, dans lesquels la fonction acquiert chaque valeur a, sauf
peut-étre deux valeurs exceptionnelles, un nombre illimité de fois.
Enfin le conférencier parle de 1'analogie entre la distribution des.
points singuliers d’une série de Taylor sur le cercle de convergence
avec la distribution des droites de Julia d’une fonction entiére. Dans
un mémoire de M. Pélya, qui va paraitre prochainement dans la
Mathematische Zeitschrift, ces questions sont discutées d’une maniére
approfondie. |

I1. — Réunion de Lausanne, 31 ot 1928.

La Société mathématique suisse a tenu sa 18me assemblée ordinaire
annuelle & Lausanne, le 31 aott 1928, sous la présidence de M. le
professeur G. JUVET, vice-président, en méme temps que la 109me
session annuelle de la Société helvétique des sciences naturelles.

Précédant de deux jours seulement Pouverture du Congrés inter-
national des mathématiciens (Bologne, 3-10 septembre), la séance
de Lausanne ne devait réunir qu’'une faible participation. Le pro-
gramme comprenait six communications dont quatre furent effective-
ment présentées:

1. — L. KoLLros (Zurich). — Généralisations de théoréemes de
Steiner et de Clifford.

I. 4 droites d’un plan, prises 3 & 3, forment 4 triangles tels que les
cercles circonscrits passent par un méme point F.

II. Les centres de ces 4 cercles sont, avec F, sur un cinquiéme
cercle  (Steiner, Werke I, p. 223).

On peut démontrer et généraliser ces 2 théorémes de plusieurs
manieéres:

1. Le lieu des foyers des paraboles touchant 3 droites est le cercle
circonscrit au triangle; les 4 cercles se eoupent donc au foyer I de
la parabole tangente aux 4 droites.

A TYaide des paraboles p, de n¢ classe touchant (n— 1) fois la




CONFERENCES ET COMMUNICATIONS 317
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droite a linfini, Clifford (Math. Papers, p. 38) a démontré que 5
droites, prises 4 & 4, déterminent 5 paraboles telles que les 5 foyers
soient sur un cercle; 6 droites, prises b a 5, déterminent 6 cercles
passant par un méme point, etc.; & (2 n— 1) droites correspond un
cercle et & 2 n droites un point F, commun & 2 n cercles. En effet,
par chaque point cyclique, on ne peut mener qu'une seule tangente
a pn; cette courbe n’a donc qu’un foyer F,; elle est déterminée par
2n tangentes, car son équation tangentielle, n’ayant que les termes
des degrés n et (n—1), dépend de fagon homogéne de (2n + 1)
paramétres. Il y a une simple infinité de courbes p, tangentes a
(2n — 1) droites; a chaque tangente issue d’un point cychique I
correspond une seule p, du faisceau et par suite une seule tangente
issue de autre point cyclique K; ces paires de tangentes isotropes se
coupent sur un cercle, lieu du foyer des p, du faisceau; 2n droites,
prises (2n— 1) & (2n— 1), donnent 2n cercles passant par le foyer
F, de la p, tangente aux 2n droites; parmi les p, tangentes a (2n—1)
droites se trouvent les (2n— 1) courbes constituées par le point &
Pinfini de Pune des droites et la p,; tangente aux (2n-— 2) autres
droites; on a ainsi (2n — 1) points F,_4 sur un cercle.

2. Les cubiques planes passant par les 6 points d’intersection des
4 droites et par les points cycliques I, K ont encore un neuviéme point
commun ! F; 4 cubiques dégénérent en une des droites et le cercle
circonscrit au triangle des 3 autres; les 4 cercles passent donc par F.
Les tangentes en I et K & toutes les cubiques forment 2 faisceaux
projectifs; ils engendrent le cercle y (théor. II); soit O, son centre;
a 5 droites, prises 4 a 4, correspondent 5 points O,; ils sont sur un
cercle de centre O;; 6 droites, prises 5 a 5, donnent 6 points O d’un
nouveau cercle, etc. (Pesci, Per. di mat., 1891). En effet, considérons
les courbes £, du n¢ ordre, dont les asymptotes sont paralléles aux
cOtés d’un polygone régulier. En coordonnées isotropes, ’équation
d’une %, n’a pas d’autres termes du n¢ degré que az" et by"; il en
résulte que les premiéres polaires des points & l'infini par rapport
& hy sont des %, 4 et que la droite polaire d’un point cyclique passe
par I'autre; si on appelle centre O,, de %, le point d’intersection de
ces 2 droites isotropes, on voit que le lieu des centres O,_; des pre-
mieres polaires %, 4 des points & I'infini est un cercle de centre O,,.
Dire qu'une courbe du n® degré est une h, équivaut a (n — 1) condi-
tions linéaires; si 'on a 3 droites dont les équations sont d, = 0,
dy =0, d; = 0, il n’y aura qu’une seule &, dans le réseau de cubiques:
A di + ddy + A,d = 0; son centre O, sera celui du cercle circons-

crit au triangle des 3 droites, puisque ce cercle est le lieu des centres
" des hyperboles équilatéres conjuguées au triangle et que ces hyperboles

1 Si I'on a n points et (n 4+ 2) droites dans un plan, les courbes d’ordre (n + 1)
passant par ces n points et par les points d’intersection des droites ont encore YlSnT—Q
points communs.

~
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sont les premiéres polaires %, des points & l'infini par rapport a .
Si nous considérons 4 droites, il n’y aura, dans le systéme linéaire:
Ad; 4+ hydy + A,d; + A,di = 0, qu'une seule &,; son centre O, est
celui du cercle y contenant les points O; des 4 triangles; 5 droites
donnent 5 points O, sur un cercle dont le centre O; est celuide 'unique
hs contenue dans le systéme linéaire: A,d + . . . 4+ A.d> =0, et
ainsi de suite.

3. Si Pon projette un quadrilatére complet stéréographiquement
sur une sphére, les plans qui correspondent aux 4 triangles passent
par un méme point F de la sphére. Soient, en effet, ¢, 0,050, ces
4 plans et m;mymsm, ceux qui projettent les 4 cotés du quadrilatére,
toutes les quadriques passant par les projections des 6 sommets et.
par le centre de projection P se coupent encore en un huitiéme point;
la sphere et les paires de plans (r;9,) (m,9,) (739;) et (m,9,) appar-
tiennent a ce réseau de quadriques; donc ¢;9,0539, et la sphére
se coupent au huitiéme point F. Analytiquement, on est conduit &
un déterminant symétrique gauche et 'on voit qu’il existe un théo-
réme analogue dans tout espace de dimension impaire; une projection.
stéréographique donne la généralisation du théoréme I dans les
espaces d’un nombre pair de dimensions !. Par contre, les sphéres
circonscrites aux 5 tétraédres déterminés par 5 plans de 'espace a
3 dimensions, pris 4 4 4, ne passent pas par un méme point.

Dans un espace a 5 dimensions ¢, par exemple, considérons 6
hyperplans: 7; . . . . mg passant par un méme point P; 4 d’entre
eux se coupent suivant une droite; cinq =, . . . m; pris 4 a 4,
donneront lieu & 5 de ces droites; une hyperquadrique par P les
coupe en 5 points qui déterminent un hyperplan gg; il y en aura,
de méme, 5 autres o; . . . ¢z; ces 6 hyperplans g; se coupent en
un méme point F. Ce résultat est susceptible d’une interprétation en
géométrie réglée de I’c; si 'on prend les 6 coordonnées de Pliicker-
d’une droite comme coordonnées homogénes d’un point de ¢4, la
relation quadratique qui les lie est représentée par une hyperquadrique
dont les points correspondent aux droites de I’espace; si on la coupe-
par un hyperplan, les o2 points d’intersection seront les images des.
droites d'un complexe linéaire. On voit donc que 6 complexes linéaires.
Ty - . . . mg ayant une droite commune p déterminent 6 autres.
complexes linéaires o; . . . . ¢gayant aussi une droite commune f.
Si les complexes linéaires sont tous spéciaux (c’est-a-dire formés par
les transversales d’une droite) on a le théoréme du double-sept:

Soient p; . . . . pgsix droites de I'e; ayant une méme transver-
sale p; 4 d’entre elles ont encore une 2¢ transversale; cinq,p; . . . ps
par exemple, prises 4 & 4, donnent 5 de ces transversales qui, d’aprés.

1 Mais le théoréme II ne se généralise pas et il n’existe pas, pour les hypersphéres,
de chaines analogues a celles de Clifford et de Pesci.
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le théoréme du double-six, coupent une méme droite fg. Nous aurons,
de méme, 5 autres droites f; . . . f;. Les 6 droites f; auront aussi
une transversale commune f. |

4. Des plans quelconques menés par 4 droites d’un plan n forment
un tétraédre ABCD; la cubique gauche c¢; passant par ABCD et les
points cycliques I, K de 7 coupent ce plan « en un 3¢ point F; ¢;
projetée successivement a partir de A, B, C et D sur = donnent les
4 cercles se coupant en F; soient a, b, ¢, d leurs centres, ¢ et k les
tangentes a ¢y en I, K; les asymptotes al, aK du 1°r cercle sont les
projections de 7, k& & partir de A; la droite Aa coupe donc 7 et k; il
en est de méme de Bb, Ce, Dd; ces 4 droites sont des génératrices de la
quadrique ¢ contenant cg, ¢ et &; ¢ coupe donc w suivant un cercle y
passant par abcdF.

Grace vient de généraliser (Camb. Phil. Proc. 1928) la chaine de
Pesci de la maniére suivante: St O, est 'intersection des plans tan-
gents & g en I et K, 5 plans, pris 4 4 4, donnent 5 droites O, qui sont
sur une quadrique g5 passant par I et K; les plans tangents & ¢ en
I et K se coupant en O;, 6 plans, pris 5 & 5, donnent 6 droites Oy
situées sur une quadrique ¢ par I et K, ete.

Meyer et Rohn ont démontré (Leipziger Ber. 1913, p. 329-346) le
théoréme suivant: Etant donnés, dans I’espace a 3 dimensions, 5 plans
quelconques et 2 points I, K, les 5 cubiques gauches passant par I, K
et respectivement par les 4 sommets de chaque tétraédre du pentaédre
donné, passent encore par 2 points F et G. Pour le prouver, menons
un ¢, par 'espace & 3 dimensions de notre figure; considérons, dans
cet g4, O €3 quelconques menés par les 5 plans donnés; ces 5 ¢,
forment un simplet de ¢,; par ses 5 sommets ABCDE et par I, K il
ne passe qu'une seule ¢, unicursale de ¢,; elle coupe notre espace a
3 dimensions en I,K et 2 autres points F, G. En projetant cette ¢,
successivement & partir de A, B, C, D et E sur notre ¢;, on aura
o cubiques gauches se coupant en F et G.

On démontre de méme le théoréme général: Etant donnés dans
un e,: (7 4 2) hyperplans e,y et 2 points I, K, les (n 4 2) courbes
unicursales d’ordre n, passant par I, K et les (n 4+ 1) sommets des
simplets obtenus en supprimant successivement chacun des hyper-
plans, ont encore (n— 1) autres points communs.

White (Camb. Phil. Proc., 1925) a montré que chacun de ces théo-
rémes est le point de départ d’une chaine analogue & celle de Clifford.
Dans l'¢5, par exemple, nous savons que 2 points I, K et 5 plans,
pris 4 & 4, déterminent 5 ¢, ayant encore 2 autres points communs;
6 plans donnent 6 groupes de 2 points qui sont sur une courbe du
5¢ ordre ¢; passant 2 fois par I et K; 7 plans déterminent 7 ¢, ayant
3 points communs; 8 plans donnent 8 groupes de 3 points sur une
¢; passant 3 fois par I et K; 9 plans donnent 9 ¢, ayant 4 points
communs, etc. :

Silon a des droites dans un plan et 3 points I, K, L dans 'espace,
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3 droites déterminent une ¢; par I, K, L et les sommets du triangle;
4 droites donnent 4 ¢; ayant un point commun F,; 5 droites donnent
5 points I, situés sur une ¢z par I, K, L; 6 droites donnent 6 ¢; passant
par un point F, etc.

Il y a des théorémes analogues dans un s,, mais leur énoncé se
complique, comme celui de White, quand » devient plus grand.

2. — MUe I, SAraSIN (Zurich). — Sur les substitutions et les groupes
de quaternions. — L’étude suivante se base sur un systéme de nombres

hypercomplexes, les quaternions d’Hamilton. Si 'on appelle z le
quaternion variable, z son conjugué, I'équation d’une hyperspheére
prend la forme:

Azz +Bz 4+ zB + C =0, ou A et C sont des constantes réelles,
B un quaternion.

On établit toutes les substitutions linéaires rationnelles de quater-
nions qui transforment en lui-méme P'espace & 4 dimensions, de telle
sorte qu’a I’ensemble des sphéres corresponde de nouveau 'ensemble
des spheéres. Ces substitutions doivent étre uniformes et 'existence
des inverses également uniformes est demandée.

Pour ces substitutions, on trouve les formes suivantes:

w = aszb (1) W=z 1 (3)
w=z-+c¢ (2) w=(az + b) . (cz + a’)_i (4)

On obtient des substitutions plus spéciales, qui transforment en
elle-méme Phypersphére unité en soumettant les coefficients aux
conditions suivantes:

aa. bbb =1 (1); ¢=0 (2); —ba +dc=0 (4)
ainsi que
ac — bd = 0

La forme 3 remplit déja les conditions requises.

Si 'on décompose "les équations 4, il en résulte huit conditions
pour la substitution générale.

A Taide des substitutions obtenues et d’une fonction de distance
établie par M. Carathéodory on peut définir une métrique sur I’hyper-
sphére. Par une représentation métrique d’un domaine a 4 dimensions
sur un autre, nous entendons une représentation uniforme et continue
qui conserve les longueurs mesurées par la fonction de distance des
courbes correspondantes. Cela revient a dire que la fonction de distance
est un invariant par rapport aux représentations métriques. On peut
établir toutes les représentations métriques et démontrer le théoréme
suivant: on obtient toutes les représentations métriques de I'hyper-




CONFERENCES ET COMMUNICATIONS 321

sphére sur elle-méme par des substitutions linéaires rationnelles et
par symétrie par rapport a un espace a 3 dimensions.

On cherche ensuite les groupes les plus généraux ayant la sphére
unité comme sphére limite (Haupt oder Grenzkugel). Ils peuvent se
mettre sous la forme:

sws = [(a — iye + (b — iyd)iy) s + b — 1,d + (@ — I, ¢)l,)
[(—i,a 4+ ¢ + (d — igh))igz — ib + d + (¢ — iza) i,

s = (24 ig). (i3 z + 1)! nous donne la représentation de I’hyper-
sphére sur espace & trois dimensions, w = (az + b) . (¢z + d)~! trans-
forme D'espace a trois dimensions en lui-méme, s le retransforme en
I’hypersphére. Les groupes de la: forme w les plus généraux qui se
transforment par s en groupes: qui-ont la sphére unité comme sphére
limite sont:

1. Les groupes abed réels, ad — be = 1.

2. Les groupes abed complexes, ad — be = 1. Ce groupe a six para-
métres. On peut encore en former un, ayant sept paramétres. Les
coefficients ont alors la forme suivante:

a:a, + a;i; + ayly ; ' b:by + rylat, + ayi,)

cie, + rlag + agt,) d:d, + ry(a, i, + ayiy)
et doivent remplir les conditions suivantes:
rya, + dy —r by —ricy =0

2 2 2 e,
aydy — ryay — ryay — byeg 4 rgriay -+ roria, =1 .

Ce dernier groupe contient toutes les transformations par lesquelles
un plan quelconque passant par I'axe réel se correspond a lui-méme,

tandis que le groupe complexe ne contient que les transformations
qui transforment le plan de Gauss en lui-méme.

3. — R. WAvVRE (Genéve). — Sur les propositions indémontrables. —
Dans quelques le¢cons consaerées a la logique mathématique, je suis
revenu sur la question des propositions indémontrables qui fit 'objet
d’une discussion entre M. Paul Lévy et moi-mémel. Il m’a paru
intéressant d’approfondir cet important sujet en précisant le sens
du mot «démontrable ». Voici briévement mes conclusions.

Soit C un corps d’axiomes mathématiques et logiques. Le mot
démontrable signifiera dans tout ce qui suit déduisible des axiomes
mathématiques de G au moyen des axiomes logiques de ce corps.

1 Voir BorEL, Lec¢ons sur la Théorie des fonctions, 3me éd., 1928, p. 257-290.

[’Enscignement mathém., 27¢ année; 1928. 21
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Cette déduction ne peut se faire que par des opérations dont les
axiomes logiques énoncent précisément la légitimité. Parmi ces der-
niers axiomes se trouvent, je le suppose, le principe formel de contra-
diction et celui du tiers exclu.

Les propositions énoncées par les axiomes ainsi que toutes les
propositions démontrables seront dites vraies, les propositions dont
la fausseté est démontrable seront dites fausses, mais, en dehors de
ces deux cas, une proposition parfaitement claire devra néanmoins
étre vraie ou fausse, en vertu du principe formel du tiers exclu,
quand bien méme sa vérité ou sa fausseté ne serait pas démontrable.

Comme M. Lévy le remarquait: on peut ignorer si une proposition
A est vraie, mais malgré cette ignorance, on peut établir que la
proposition A serait démontrable si elle était vraie, ou encore, que
sa fausseté serait démontrable si cette proposition A était fausse.

Dressons alors le tableau suivant qui épuise toutes les éventualités:

Si A est vrale sa vérité est démontrable.

1
L <l Si A est fausse sa fausseté est démontrable.
1 [ Si A est vraie sa vérité est démontrable.
| i Si A est fausse sa fausseté n’est pas démontrable.
1. | Si A est vraie sa vérité n'est pas démontrable.
' i Si A est fausse sa fausseté est démontrable.
v { Si A est vraie sa vérité n’est pas démontrable.
' Si A est fausse sa fausseté n’est pas démontrable.

Maintenant, dans quel cas la question suivante: La proposition A
est-elle yraie ou fausse ? pourra-t-elle étre tranchée.

Cette question pourrait étre tranchée dans I'éventualité I que A
soit vraie ou fausse, dans II si A est vraie, dans III si A est fausse;
elle ne pourrait pas étre tranchée dans II si A est fausse, dans III
si A est vraie et enfin, dans IV que A soit vraie ou fausse; c’est évident.

Mais voici une seconde question plus délicate:

Peut-on démontrer que la question de savoir si la proposition A est
grate ou fausse est un probléme insoluble ?

- Dans I’éventualité I, une telle preuve est évidemment impossible.
Dans II, une telle preuve est encore impossible, car elle démontrerait.
que A est fausse et le probléme serait résolu; c’est contradictoire,
Dans III, il en est de méme ¢n échangeant les valeurs vraie et fausse.

On ne peut espérer prouver que le probléme est insoluble que dans
la circonstance IV.

Il faut donc démontrer que 'on se trouve dans cette derniére cir-
constance IV pour prouver que le probléme est insoluble. D’autre
part, il suffit de le démontrer, puisque I'on est certain que dans IV
le probléme est insoluble.

Et comment prouver que I'on se trouve dans ce dernier cas ? I
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faut démontrer que la proposition A peut étre affirmée vraie et égale-
ment affirmée fausse, sans que 'on rencontre de contradiction avec
les axiomes.

Cette condition est également suffisante.

Cela reviendrait & établir I'indépendance de A a I'égard du corps G
d’axiomes. C’est d’ailleurs ainsi que l'on prouve l'indépendance
entre eux des axiomes d’un corps donné. Pour employer une image,
appelons domaine d’action d’un corps d’axiomes l’ensemble des
propositions déduisibles a partir de ce corps. Dans le dernier cas, A
ainsi que sa contradictoire non A sont en dehors du domaine d’action
du corps C. En fait, dans la circonstance IV, la proposition A, de méme
que sa contradictoire non A, pourrait étre adjointe au corps C, ce
qui constituerait un nouveau corps C'. Ce dernier serait exempt de
contradiction, si G lest, et formé d’axiomes indépendants, si les -
axiomes de C le sont. 4

Inversement, si I'on retranche d’un corps d’axiomes indépendants
un axiome mathématique, ce dernier est dans la circonstance IV
vis-4-vis du corps des axiomes restants. |

Il en est ainsi du Postulatum d’Euclide & I’égard des autres axiomes
des « Eléments », puisque I'on sait qu’on peut ’admettre ou le rejeter
sans que cela implique contradiction.

Avec les axiomes implicitement admis par la science classique, la
proposition appelée « grand théoréme de Fermat » peut donner lieu
a la circonstance I ou & la circonstance I1I, on ne sait pas actuellement
a laquelle, mais il ne peut donner lieu & I ou IV, puisque §’il est faux,
c’est strement vérifiable, donc démontrable. La proposition: la
constante d’Euler est algébrique, pourrait donner lieu & I'une des
circonstances I, I1, III, IV, sans que I’on sache actuellement a laquelle
ces deux derniéres remarques sont la traduction, d’aprés notre tableau,
des ingénieuses distinctions de M. Paul Lévy. |

Je ne vois pas, pour ma part, de contradiction & priori, & vouloir
démontrer la proposition suivante: Si le théoréme de Fermat est
vrai, il est indémontrable. En d’autres termes, je ne vois pas de
contradiction & ce que I'on puisse, relativement & une proposition
quelconque, dire dans quelle circonstance I, IT, IIL, IV, elle se trouve.
Il est clair qu’on diminuera les chances de se trouver dans I'une des
circonstances II, III, IV, en augmentant le nombre des axiomes et
par 1a méme leur domaine d’action. On augmentera ces chances en
restreignant le corps d’axiomes.

Et pour affirmer que tout probléme arithmétique (par exemple, le
probléme que pose le grand théoréme de Fermat) peut étre résolu, il
faut prouver que le corps des axiomes arithmético-logiques est suffi-
samment complet. Enfin, disons encore que pour nous qui rejetons
le principe du tiers exclu, le vrai se confond avec la vérité démontrable,
et le faux avec la fausseté démontrable.
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4. — Gustave Dumas (Lausanne). — Sur les équations de la forme
Ax®y’z £+ B=0 . (1)

Cette équation rentre dans la catégorie de celles dont le polyédre
se réduit & une simple droite. Il en résulte que sa résolution s’obtient
par la construction d’un tableau:

a b c
a! hl cl (2)

a/l hll C”

a éléments entiers et de déterminant égal & = 1, si, comme on '’admet
ici, pour simplifier, les entiers @, b, ¢ sont sans diviseur commun.
En appelant A’ le mineur de &’ dans le tableau, B’ celui de &', etc.,

on a alors, en admettant pour simplifier Uécriture que dans (1),
A=—B=1,

A’ A[' Ia' BN C’ CI' ‘
Ee==Ergs y==%"1", z=2E&"1 (3)

INY

comme solution paramétrique de (1). Il existe une infinité de solutions
telles que (3), car le tableau (2) peut s’obtenir d’une infinité de facons.
Pour I'équation

P —ady =0

on retrouve facilement les trois solutions & caractére holomorphe
considérées déja par H. W. E. Juna (Journal de Crelle, t. 133). .

Les procédés de résolution employés ci-dessus rentrent, comme cas
particuliers, dans la méthode qu’utilise Pauteur de la communication
pour la résolution des singularités des surfaces algébriques.
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