Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1928)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LA SECONDE PÉRIODE DU JEU DE CLOCHE ET MARTEAU

Autor: Allen, Edward S.

Kapitel: 2. — Espérance mathématique de l'Auberge.

DOI: https://doi.org/10.5169/seals-21884

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Mais, si nous supposons que μ reste dans la caisse au moment que l'Auberge s'ouvre, il faudra remplacer C (le montant en caisse avant le premier lancement des dés) dans ces formules par $C-\mu$, et puis calculer les paiements probables de la seconde période.

2. — Espérance mathématique de l'Auberge.

Soit, en premier lieu, s_{μ} le gain probable de l'Auberge par le coup qui ouvre l'Auberge. Ce coup peut être n'importe lequel des nombres $\mu+1, \mu+2, \ldots, 21$, et les gains correspondants seront $1, 2, \ldots, 21-\mu$ respectivement.

Or M. Jéquier a calculé 22 nombres, ν_0 , ν_1 , ν_2 . . . , ν_{21} , qui sont les nombres de possibilités d'amener 0, 1, 2, , 21 points respectivement. Le gain probable de l'Auberge de ce premier coup est donc

$$S_{\mu} = \frac{\sum_{\varrho = \mu + 1}^{21} (\varrho - \mu) \nu_{\varrho}}{\sum_{\varrho = \mu + 1}^{21} \nu_{\varrho}}.$$
 (2)

Dans chaque coup après celui qui ouvre l'Auberge, et avant le prochain qui diminue le nombre de jetons dans la caisse, le versement peut être $0, \mu+1, \mu+2, ..., 21$, et, vu qu'un versement de 0 apporte 1 à l'Auberge, les gains correspondants seront $1, 1, 2, ..., 21 - \mu$. Le gain moyen par coup sera alors

$$\frac{v_{0} + \sum_{\varphi=\mu+1}^{21} (\varphi - \mu) v_{\varphi}}{v_{0} + \sum_{\varphi=\mu+1}^{21} v_{\varphi}}.$$

La probabilité d'amener un nombre qui abaissera la caisse — tels nombres sont $1, 2, 3, \ldots, \mu$ — est

$$\sum_{\varrho=1}^{\mu} v_{\varrho}$$

$$\sum_{\varrho=0}^{21} v_{\varrho}$$

Par conséquent, le nombre moyen des coups après celui qui ouvre l'Auberge et avant l'abaissement prochain de la caisse sera

$$\frac{\sum\limits_{\varrho=0}^{21}\mathsf{v}_{\varrho}}{\sum\limits_{\varrho=1}^{\mu}\mathsf{v}_{\varrho}^{2}}-1=\frac{\mathsf{v}_{0}+\sum\limits_{\varrho=\mu+1}^{21}\mathsf{v}_{\varrho}}{\sum\limits_{\varrho=1}^{\mu}\mathsf{v}_{\varrho}}$$

Si nous désignons par q'_{μ} le gain probable pour ce temps-là, nous trouvons

$$q'_{\mu} = \frac{v_{0} + \sum_{\varrho = \mu + 1}^{21} v_{\varrho} \quad v_{0} + \sum_{\varrho = \mu + 1}^{21} (\rho - \mu) v_{\varrho}}{\sum_{\varrho = 1}^{\mu} v_{\varrho}} = \frac{v_{0} + \sum_{\varrho = \mu + 1}^{21} (\rho - \mu) v_{\varrho}}{\sum_{\varrho = 1}^{\mu} v_{\varrho}} . \quad (3)$$

Le raisonnement par lequel nous calculerons q'_{μ} , l'espérance mathématique totale du gain de l'Auberge (à part celui qui est attendu en vertu de la 16^{me} règle), est le suivant:

 q_1' est évidemment le même que q_1 , car le seul abaissement possible de la caisse de 1 résulte d'un versement de 1.

Quant à $q_{\mu}(\mu > 1)$, cette quantité a pour premier terme q'_{μ} , le gain probable avant la première réduction de la caisse. Or la probabilité pour que cette réduction soit σ est

$$\frac{v_{\sigma}}{\sum_{\varphi=1}^{\mu}v_{\varphi}};$$

c'est aussi la probabilité que $\mu-\sigma$ reste dans la caisse, et que l'espérance mathématique de l'Auberge soit $q_{\mu-\sigma}$. Il en résulte que

$$q_{\mu} = q'_{\mu} + \frac{\sum_{\sigma=1}^{\mu} v_{\sigma} q_{\mu-\sigma}}{\sum_{\varrho=1}^{\mu} v_{\varrho}} = \frac{v_{0} + \sum_{\varrho=\mu+1}^{21} (\varrho - \mu) v_{\varrho} + \sum_{\varrho=1}^{\mu-1} v_{\varrho} q_{\mu-\varrho}}{\sum_{\varrho=1}^{\mu} v_{\varrho}}.$$
 (4)

La carte Auberge peut donc espérer recevoir des joueurs actifs

$$t_{\mu} = s_{\mu} + q_{\mu} \tag{5}$$

dans le cas qu'elle trouve μ dans la caisse au moment d'être ouverte. Mais ce n'est pas tout. De la règle 16 il suit que le joueur qui tient l'Auberge ne doit rien payer à cette carte (comme les autres le doivent) mais que le Cheval fait ce service pour lui. Il faut donc ajouter à t_{μ} , $\frac{s_{\mu}}{n}$ et un autre terme que nous calculerons bientôt.

3. — Espérances mathématiques des autres cartes et des joueurs dans la seconde période.

Examinons maintenant la source de ces gains de l'Auberge compris dans t_{μ} . Comme dans les cas examinés par M. Jéquier, nous trouvons que les cartes Cloche, Marteau, et Cloche-Marteau paieront respectivement $\frac{5}{36}t_{\mu}$, $\frac{5}{36}t_{\mu}$, $\frac{1}{36}t_{\mu}$; car dans $\frac{5}{36}$ des coups on amènera Cloche sans Marteau (ou Marteau sans Cloche) et dans $\frac{1}{36}$ des coups Cloche et Marteau ensemble.

Enfin, il faut partager les $\frac{25}{36}t_{\mu}$ qui restent entre le Cheval et les joueurs actifs. Ce sont toujours ces derniers qui paient le coup qui ouvre l'Auberge; en effet, ce coup ne peut pas amener $0.\frac{25}{36}s_{\mu}$ est payé par les joueurs actifs. Soit $\frac{25}{36}(t_{\mu}-s_{\mu})=\frac{25}{36}q_{\mu}=y_{\mu}+z_{\mu}$, où y_{μ} est la somme que l'Auberge espère recevoir des joueurs actifs, z_{μ} celle qu'il espère recevoir du Cheval.

Le calcul de z_n est fort semblable à celui de q_n . Avec 1 dans la caisse, nous trouvons

$$z_{1} = \frac{v_{0}}{v_{0} + \sum_{\varphi=2}^{21} (\varphi - 1) v_{\varphi}} \cdot \frac{25}{36} q_{1} = \frac{\frac{25}{36} v_{0}}{v_{1}}.$$
 (6)